11.在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)P(x1,y1)、Q(x2,y2),定義:d(P,Q)=|x1-x2|+|y1-y2|. 已知點(diǎn)B(1,0),點(diǎn)M為函數(shù)y=ex上的動(dòng)點(diǎn),則使d(B,M)取最小值時(shí)點(diǎn)M的坐標(biāo)是(0,1).

分析 根據(jù)新定義的概念,求出d(B,M)的表達(dá)式,構(gòu)造函數(shù)f(x)=|x-1|+ex,利用分段函數(shù)求出f(x)的最小值以及最小值對應(yīng)的點(diǎn)M的坐標(biāo).

解答 解:∵B(1,0),點(diǎn)M為函數(shù)y=ex上動(dòng)點(diǎn),設(shè)M(x,y),則
d(B,M)=|x1-x2|+|y1-y2|=|x-1|+|ex-0|=|x-1|+ex;
設(shè)f(x)=|x-1|+ex,
則f(x)=$\left\{\begin{array}{l}{{e}^{x}+x-1,x≥1}\\{{e}^{x}-x+1,x<1}\end{array}\right.$,
當(dāng)x≥1時(shí),f′(x)=ex+1≥0,f(x)是單調(diào)增函數(shù),且f(x)有最小值f(1)=e;
當(dāng)x<1時(shí),f′(x)=ex-1,且f′(0)=0;
在x<0時(shí),f′(x)<0,f(x)是單調(diào)減函數(shù),
0<x<1時(shí),f′(x)>0,f(x)是單調(diào)增函數(shù),∴有最小值f(0)=2;
綜上,f(x)的最小值為2,此時(shí)對應(yīng)點(diǎn)為M(0,1).
故答案為:(0,1).

點(diǎn)評 本題考查了新定義的求兩點(diǎn)間的距離最小值的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
已知喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由;
喜好體育運(yùn)動(dòng)不喜好體育運(yùn)動(dòng)合計(jì)
男生5
女生10
合計(jì)50
下面的臨界值表供參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若tanα+tanβ-tanαtanβ+1=0,α,β∈($\frac{π}{2},π$),則α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知扇形OAB的面積是4cm2,它的周長是8cm,求扇形的圓心角及弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=f(x)的圖形如圖所示,給出y=f(x)與x=10和x軸所圍成圖形的面積估計(jì)值;要想得到誤差不超過1的面積估計(jì)值,可以怎么做?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)$\sqrt{2}a+$1,a,a-1為鈍角三角形的三邊,則a的取值范圍為(2+$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),求角A,B,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(1-$\frac{3}{{x}^{3}}$)(x2+$\frac{2}{x}$)5的展開式中x4的系數(shù)為(  )
A.-60B.70C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F,定點(diǎn)A($\frac{5}{3}$a,0),在橢圓上存在點(diǎn)P滿足線段AP的垂直平分線過點(diǎn)F,則橢圓離心率的取值范圍是[$\frac{1}{3}$,1).

查看答案和解析>>

同步練習(xí)冊答案