19.已知函數(shù)f(x)=x3,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,那么f(x1)+f(x2)+f(x3)的值<0(比較大小)

分析 由題意函數(shù)f(x)=x+x3是奇函數(shù)也是增函數(shù),故可由此性質(zhì)對f(x1)+f(x2)+f(x3)的值進行探究,推出結(jié)果.

解答 解:由題意函數(shù)f(x)=x+x3是奇函數(shù)也是增函數(shù)
又x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0
∴x1<-x2,x2<-x3,x3<-x1,
故有f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(x1)=-f(x1),
三式相加得f(x1)+f(x2)+f(x3)<-[f(x1)+f(x2)+f(x3)],即f(x1)+f(x2)+f(x3)<0
故答案為:<.

點評 本題考查奇偶性與單調(diào)性的綜合,解題的關(guān)鍵是利用函數(shù)的性質(zhì)構(gòu)造出f(x1)+f(x2)+f(x3)<-[f(x1)+f(x2)+f(x3)],從而證得f(x1)+f(x2)+f(x3)<0,本題考查了推理判斷的能力,觀察的能力,是一個比較抽象的題,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某次考試中,共有10道題供選擇,已知該生會答其中的6道題,隨機從中抽5道題供該生回答,答對3道題則及格,求該生在第一題不回答的情況下及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x<-2,求函數(shù)y=2x+$\frac{1}{x+2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+$\frac{1}{2}$|+|x-$\frac{3}{2}$|.
(1)求不等式f(x)≤3的解集;
(2)若關(guān)于x的不等式f(x)<$\frac{1}{2}$|1-a|的解集是空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解方程:x4(1+lgx)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若2a+3b≤2-b+3-a,則a+b≤0(填“<”“>0”或“=”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算:$\sum_{r=1}^{r=n}$$\frac{r+2}{r!+(r+1)!+(r+2)!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植水果的經(jīng)濟價值是種植乙水果經(jīng)濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿足甲水果生產(chǎn)的需要,該光源照射范圍是∠ECF=$\frac{π}{6}$,點E,F(xiàn)的直徑AB上,且∠ABC=$\frac{π}{6}$.
(1)若CE=$\sqrt{13}$,求AE的長;
(2)設(shè)∠ACE=α,求該空地產(chǎn)生最大經(jīng)濟價值時種植甲種水果的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下列寫法是否正確,說明理由
①{(1,2)}={(2,1)}={(x,y)|x=1,或y=2}={1,2}
②{y|y=-x2+2,x∈R}∩{y|y=-x+2,x∈R}={(0,2),(1,1)}
③0∈∅,∅?{0}.

查看答案和解析>>

同步練習(xí)冊答案