分析 先畫出滿足條件的平面區(qū)域,結(jié)合x2+y2的幾何意義求出其最小值即可.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
而x2+y2的幾何意義表示平面區(qū)域內(nèi)的點到原點的距離的平方,
顯然原點到直線x+y=1的距離的平方為x2+y2的最小值,
原點到直線x+y=1的距離d=$\frac{|-1|}{\sqrt{1+1}}$=$\frac{1}{\sqrt{2}}$,
∴x2+y2的最小值是$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.
點評 本題考察了簡單的線性規(guī)劃問題,考察數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 外切 | B. | 相離 | C. | 相交 | D. | 內(nèi)切 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=sin({\frac{1}{2}x-\frac{π}{3}})$ | B. | $y=sin({\frac{1}{2}x-\frac{π}{6}})$ | C. | $y=sin({2x-\frac{π}{3}})$ | D. | $y=sin({2x-\frac{2π}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 22017-1 | B. | 22016-1 | C. | 22015-1 | D. | 22014-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com