在研究色盲與性別的關系調查中,調查了男性240人,其中有19人患色盲,調查的260個女性中3人患色盲
(1)根據(jù)以上的數(shù)據(jù)建立一個2*2的列聯(lián)表;
(2)若認為“性別與患色盲有關系”,則出錯的概率會是多少.
考點:獨立性檢驗的應用
專題:計算題,概率與統(tǒng)計
分析:(1)根據(jù)調查了男性240人,其中有19人患色盲,調查的260個女性中3人患色盲,列出列聯(lián)表;
(2)代入公式計算得出K2值,結合臨界值,即可求得結論.
解答: 解:(1)
 患色盲不患色盲總計
19221240
3257260
總計22478500
(2)假設 H:“性別與患色盲沒有關系”
先算出K的觀測值:k2=
500×(19×257-221×3)2
240×260×22×478
≈13.569    9分
則若認為“性別與患色盲有關系”,則出錯的概率為0.001   12分
點評:本題考查獨立性檢驗的應用,本題解題的關鍵是理解臨界值對應的概率的意義,能夠看出兩個變量之間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的零點;
(3)若函數(shù)f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,△PAB是等邊三角形,D、E分別為AB、PC的中點.
(1)若點F在BC邊上,BF=λBC,則實數(shù)λ為何值時,PB∥平面DEF;
(2)若∠PAC=∠PBC=90°,AB=2,AC=
5
,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和是Sn,且-1,Sn,an+1成等差數(shù)列(n∈N*),a1=1.
(1)求數(shù)列{an}的通項公式.
(2)若數(shù)列{bn}滿足b1=a1,bn+1=bn+
1
3an
(n≥1)求數(shù)列{bn}的前n項和Tn
(3)函數(shù)f(x)=log3x,設數(shù)列{cn}滿足cn=
1
(n+3)[f(an)+2]
求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)2014=a0+a1x+a2x2+…+a2014x2014,則a1+2a2+3a3+…+2014a2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三內角A,B,C所對的邊分別為a,b,c,a=
15
,b=2,向量
m
=(-1,
3
),
n
=(cosA,sinA),且
m
n
=1.
(1)求角A;
(2)求
1+sin2B
cos2B-sin2B
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos(2x+
π
6

(1)當-
π
6
≤x≤
π
3
時,求函數(shù)y=f(x)的最大值和最小值及相應的x的值;
(2)若方程f(x)=a在區(qū)間[0,
3
]上只有一個實數(shù)根,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項和為Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通項公式;
2)若cn=anbn,{cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
x
-alnx.(a∈R)
(1)當a=-1時,試確定函數(shù)f(x)在其定義域內的單調性;
(2)求函數(shù)f(x)在(0,e)上的最小值.

查看答案和解析>>

同步練習冊答案