分析 (1)根據產品的利潤=銷售額-產品的成本建立函數關系;
(2)利用基本不等式可求出該函數的最值,注意等號成立的條件.
解答 解:(1)由題意知,a=40-$\frac{45}{x+20}$
y=(5+$\frac{300}{a}$)a-x-(100+30a)=1000-$\frac{900}{x+20}$-x(x>0)
(2)y=1000-$\frac{900}{x+20}$-x=1020-[$\frac{900}{x+20}$+(x+20)]≤1020-2$\sqrt{900}$=960,
當且僅當$\frac{900}{x+20}$=x+20,即x=10時,等號成立,
∴促銷費用投入10萬元時,商家的利潤最大,最大利潤為960萬元.
點評 本題主要考查了函數模型的選擇與應用,以及基本不等式在最值問題中的應用,同時考查了計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1008 | B. | 2015 | C. | 2016 | D. | 4032 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com