分析 (1)由(n+1)an2+anan+1-nan+12=0,變形為:[(n+1)an-nan+1](an+an+1)=0,由于an>0,可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,利用“累乘求積”及其等差數(shù)列的前n項(xiàng)和公式即可得出.
(2)bn=2n-1+an-1=2n-1+2n-1.再利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵(n+1)an2+anan+1-nan+12=0,
∴[(n+1)an-nan+1](an+an+1)=0,
∵對(duì)于任意的n∈N+都有an>0,
∴(n+1)an-nan+1=0,
化為$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n}}$•…$•\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n}{n-1}$$•\frac{n-1}{n-2}$•…•$\frac{2}{1}$•2=2n,(n=1時(shí)也成立).
∴an=2n.
∴Sn=$\frac{n(2n+2)}{2}$=n2+n.
(2)bn=2n-1+an-1=2n-1+2n-1.
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{{2}^{n}-1}{2-1}$+$\frac{n(1+2n-1)}{2}$
=2n+n2-1.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“累乘求積”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù) | B. | 是偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 是非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com