13.在△ABC中,$\frac{cosA}{cosB}$=$\frac{a}$=$\frac{5}{3}$,則△ABC的形狀是怎樣?

分析 先由正弦定理和二倍角公式,得到sin2A=sin2B,再根據(jù)邊角關(guān)系得到A+B=$\frac{π}{2}$,問題得以判斷.

解答 解:由正弦定理可得$\frac{a}$=$\frac{sinB}{sinA}$,
∵$\frac{cosA}{cosB}$=$\frac{a}$=$\frac{5}{3}$,
∴$\frac{cosA}{cosB}$=$\frac{sinB}{sinA}$,
∴cosAsinA=sinBcosB,
∴$\frac{1}{2}$sin2A=$\frac{1}{2}$sin2B,
∴sin2A=sin2B,
∵$\frac{a}$=$\frac{5}{3}$,
∴π-2A=2B,
∴A+B=$\frac{π}{2}$,
∴△ABC是直角三角形

點評 本題考查了正弦定理的應(yīng)用以及三角函數(shù)的化簡,以及三角的邊角的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知F是拋物線y2=x的焦點,過F的直線l交拋物線與A,B兩點,且|AB|=3,則線段AB的中點到y(tǒng)軸的距離為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,P是平行四邊形ABCD外一點,E,F(xiàn)分別是PC,PD的中點,判斷EF與平面PAB是否平行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\sqrt{\sqrt{3}-tan2x}$的定義域是($\frac{kπ}{2}$-$\frac{π}{4}$,$\frac{kπ}{2}$+$\frac{π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知復(fù)數(shù)a+bi與3+(4-k)i相等,且a+bi的實部、虛部分別是方程x2-4x-3=0的兩根,試求:a,b,k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=$\frac{{x}^{3}-3x+a}{x}$,f(x)>0在x∈[$\frac{1}{2}$,2]時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若角A、B、C 的對邊分別為a,b,c,且atanB=5,bsinA=4,則a等于( 。
A.$\frac{15}{4}$B.$\frac{25}{4}$C.5D.$\frac{20}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-2a(-1)klnx(k∈N*,a∈R且a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若k=2016時,關(guān)于x的不等式f(x)≥2ax對任意的x∈[e,+∞)恒成立,e為自然對數(shù)的底數(shù),求正數(shù)a的取值范圍;
(3)若函數(shù)y=g(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=g(x)的極值點.若k=2016,函數(shù)g(x)=$\frac{1}{a}$f(x)-$\frac{1}{a}$x2+x-$\frac{m}{x}$(m∈R)有兩個極值點x1,x2,且x1<x2,試判斷g(x2)與x2-1大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.甲、乙兩名學(xué)生五次數(shù)學(xué)測驗成績(百分制)如圖所示.
①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);
②甲同學(xué)的平均分與乙同學(xué)的平均分相等;
③甲同學(xué)成績的方差大于乙同學(xué)成績的方差.
以上說法正確的是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步練習(xí)冊答案