分析 由${a_{n+1}}=\frac{{3{a_n}+\sqrt{3}}}{{3-\sqrt{3}{a_n}}}$,${a_1}=3\sqrt{3}$可知數(shù)列{an}的周期為6,從而解得.
解答 解:∵${a_{n+1}}=\frac{{3{a_n}+\sqrt{3}}}{{3-\sqrt{3}{a_n}}}$,${a_1}=3\sqrt{3}$,
∴a2=$\frac{3{a}_{1}+\sqrt{3}}{3-\sqrt{3}{a}_{1}}$=-$\frac{5}{3}$$\sqrt{3}$,
a3=$\frac{3{a}_{2}+\sqrt{3}}{3-\sqrt{3}{a}_{2}}$=-$\frac{1}{2}$$\sqrt{3}$,
a4=$\frac{3{a}_{3}+\sqrt{3}}{3-\sqrt{3}{a}_{3}}$=-$\frac{1}{9}$$\sqrt{3}$,
a5=$\frac{3{a}_{4}+\sqrt{3}}{3-\sqrt{3}{a}_{4}}$=$\frac{1}{5}$$\sqrt{3}$,
a6=$\frac{3{a}_{5}+\sqrt{3}}{3-\sqrt{3}{a}_{5}}$=$\frac{2}{3}$$\sqrt{3}$,
a7=$\frac{3×\frac{2}{3}\sqrt{3}+\sqrt{3}}{3-\sqrt{3}•\frac{2}{3}\sqrt{3}}$=3$\sqrt{3}$,
故數(shù)列{an}的周期為6,
而2015=335×6+5,
故a2015=a5=$\frac{1}{5}$$\sqrt{3}$,
故答案為:$\frac{{\sqrt{3}}}{5}$.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式的應(yīng)用及周期性的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4$\sqrt{3}$,$\frac{π}{6}$) | B. | (4$\sqrt{3}$,$\frac{π}{3}$) | C. | (4$\sqrt{3}$,$\frac{11π}{6}$) | D. | (4$\sqrt{3}$,-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,$\frac{2}{3}$π) | B. | ($\sqrt{2}$,$\frac{2}{3}$π) | C. | ($\sqrt{2}$,$\frac{4}{3}$π) | D. | (2,$\frac{4}{3}$π) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com