15.已知命題p:存在x∈R,使tanx=$\frac{\sqrt{2}}{2}$,命題q:x2-3x+2<0的解集是{x|1<x<2},下列結(jié)論:
①命題“p且q”是真命題;
②命題“p且¬q”是假命題;
③命題“¬p或q”是真命題;
④命題“¬p或¬q”是假命題,
其中正確的是( 。
A.②③B.①②④C.①③④D.①②③④

分析 本題考查復(fù)合命題的真假,先判斷命題p和命題q的真假,然后判斷¬P和¬q的真假,由此判斷復(fù)合命題“p∧q”,“p∧¬q”,“¬p∨q”和“¬p∨¬q”的真假.

解答 解:∵命題p:?x∈R,使tanx=$\frac{\sqrt{2}}{2}$是真命題,
命題q:x2-3x+2<0的解集是{x|1<x<2}是真命題,
∴¬P是假命題,¬q是假命題,
∴命題“p∧q”是真命題;
命題“p∧¬q”是假命題;
命題“¬p∨q”是真命題;
命題“¬p∨¬q”是假命題.
故①②③④正確,
故選:D.

點(diǎn)評(píng) 本題考查復(fù)合命題的真假判斷,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)k是一個(gè)正整數(shù),(1+$\frac{x}{k}$)5的展開式中第三項(xiàng)的系數(shù)為$\frac{5}{8}$,記函數(shù)y=x2與y=kx的圖象所圍成的陰影部分為Ω,任取x∈[0,4],y∈[0,16],則點(diǎn)(x,y)恰好落在陰影區(qū)域Ω內(nèi)的概率為( 。
A.$\frac{17}{96}$B.$\frac{5}{32}$C.$\frac{7}{48}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.集合{x∈N|x=5-2n,n∈N}的非空真子集個(gè)數(shù)是( 。
A.2B.3C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U是實(shí)數(shù)集R,M={x|x<1},N={x|0<x<2},則集合M∩N等于( 。
A.{x|0<x<2}B.{x|1<x<2}C.{x|0<x<1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個(gè)函數(shù)中,既是定義域上的奇函數(shù)又在區(qū)間(0,1)內(nèi)單調(diào)遞增的是(  )
A.$y=\sqrt{x}$B.y=-sinxC.$y=\frac{1}{x}$D.$y=\frac{{{x^2}-1}}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列命題:
①函數(shù)y=cos($\frac{2}{3}x+\frac{π}{2}$)是奇函數(shù);
②若α,β是第一象限角且α<β,則tanα<tanβ;
③x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}$)的一條對(duì)稱軸;
④函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象關(guān)于點(diǎn)($\frac{π}{12},0$)成中心對(duì)稱.
其中正確命題的序號(hào)為( 。
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,且點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲線x2-y2=2n上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題p:m>4,命題q:方程4x2+4(m-2)x+9=0無實(shí)根,若p∨q為真,p∧q為假,¬p為假,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在如圖所示的正方形中隨機(jī)投擲10000 個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(-1,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值( 。
附“若X~N(μ,σ2),則
P(μ-σ<X≤μ+σ)=0.6826.
p(μ-2σ<X≤μ+2σ)=0.9544.
A.1193B.1359C.2718D.3413

查看答案和解析>>

同步練習(xí)冊答案