分析 (1)由點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲線x2-y2=2n上.可得Sn-Sn-1=2n(n≥2),即可得出.
(2)bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.即可得出.
解答 解:(1)由點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲線x2-y2=2n上.
∴Sn-Sn-1=2n(n≥2),
即an=2n(n≥2),
又a1=2也適合上式,
∴數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*).
(2)bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴Tn=$\frac{1}{2}$$[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}$$(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
點(diǎn)評 本題考查了遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | -3 | D. | -13 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com