17.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn),過(guò)F1且垂直于x軸的直線交橢圓于P,Q兩點(diǎn),若△PQF2為正三角形,則橢圓的離心率是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 先求出PF1 的長(zhǎng),直角三角形PF1F2 中,由邊角關(guān)系得tan30°=$\frac{P{F}_{1}}{{F}_{1}{F}_{2}}$=$\frac{\frac{^{2}}{a}}{2c}$,建立關(guān)于離心率的方程,解方程求出離心率的值

解答 解:由已知可得,PF1=$\frac{^{2}}{a}$
∵tan30°=$\frac{P{F}_{1}}{{F}_{1}{F}_{2}}$=$\frac{\frac{^{2}}{a}}{2c}$=$\frac{1-{e}^{2}}{2e}$=$\frac{\sqrt{3}}{3}$
∴$\sqrt{3}{e}^{2}+2e-\sqrt{3}=0$
∵0<e<1
∴e=$\frac{\sqrt{3}}{3}$
故選:D.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),直角三角形中的邊角關(guān)系,解方程求離心率的大。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ln(ex)-kx.
(1)求f(x)的單調(diào)區(qū)間;
(2)若?x∈(0,+∞),都有f(x)≤0,求實(shí)數(shù)k的取值范圍;
(3)證明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+1)-kx2+k(k∈R).
(1)若函數(shù)f(x)過(guò)P(0,1),求f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.一副三角板如圖拼成,AB=AC,∠BAC=90°,∠DBC=30°,∠BCD=90°,將△BCD沿BC折起,使得平面ABC⊥平面BCD.
(1)若AB=$\sqrt{2}$,求四面體A-BCD的體積;
(2)求證:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在底面為梯形的四棱錐S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)求三棱錐B-SAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為A1D1和A1B1的中點(diǎn).
(Ⅰ)求二面角B-FC1-B1的余弦值;
(Ⅱ)若點(diǎn)P在正方形ABCD內(nèi)部及邊界上,且EP∥平面BFC1,求|EP|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)B(0,-2).
(1)求此橢圓的方程;
(2)若直線y=kx+1(k≠0)交橢圓C于不同的兩點(diǎn)E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知橢圓$\frac{{x}^{2}}{4}$+y2=1的左右焦點(diǎn)分別為F1、F2,以它的短軸為直徑作圓O,若點(diǎn)P是O上的動(dòng)點(diǎn),則|PF1|2+|PF2|2的值是( 。
A.8B.6C.4D.與點(diǎn)P的位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD中,AP⊥平面PBC,AB∥DC,AP=AD=DC=$\frac{1}{2}$AB=1,∠ADC=120°,E,F(xiàn)分別為線段AB,PC的中點(diǎn).
(Ⅰ)求證:AP∥平面EFD;
(Ⅱ)求證:平面EFD⊥平面APC;
(Ⅲ)求錐體P-ADC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案