分析 利用導(dǎo)數(shù)可得函數(shù)為增函數(shù),把要求解的不等式轉(zhuǎn)化為$\frac{x+1}{x-1}$<$\frac{m}{(x-1)^{2}(7-x)}$在[2,4]恒成立,分離變量m后再利用導(dǎo)數(shù)求得函數(shù)的最大值,則實(shí)數(shù)m的取值范圍可求.
解答 解:由于函數(shù)f(x)=x+sinx,
f′(x)=1+cosx≥0恒成立,
即有f(x)為R上的增函數(shù),
∵對(duì)于任意的x∈[2,4],不等式f($\frac{x+1}{x-1}$)<f($\frac{m}{(x-1)^{2}(7-x)}$)恒成立,
∴$\frac{x+1}{x-1}$<$\frac{m}{(x-1)^{2}(7-x)}$在[2,4]恒成立,
∵x∈[2,4],
∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
設(shè)g(x)=(x+1)(x-1)(7-x),x∈[2,4],
則g(x)=-x3+7x2+x-7,
∴g′(x)=-3x2+14x+1=-3(x-$\frac{7}{3}$)2+$\frac{52}{3}$,
∴當(dāng)x∈[2,4]時(shí),g′(x)>0.
∴y=g(x)在[2,4]上是增函數(shù),g(x)max=g(4)=45.
綜上知符合條件的m的取值范圍是(45,+∞).
故答案為:(45,+∞).
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,訓(xùn)練了利用函數(shù)的單調(diào)性的性質(zhì)求解不等式,體現(xiàn)了數(shù)學(xué)值思想方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m≤-3 | B. | m≥3 | C. | m≤-3或m≥3 | D. | m≥-3或m≤3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 4.25 | 1.57 | -0.61 | -0.59 | 0 | 0.42 | -0.35 | 0.56 | 0.26 | 3.27 |
y | -226.05 | -10.04 | 0.07 | 0.03 | 0 | 0.20 | -0.22 | 0.03 | 0.21 | -101.63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1+y}{1-y}$ | B. | ln$\frac{1+y}{1-y}$ | C. | $\frac{1}{2}$ln$\frac{1+y}{1-y}$ | D. | $\frac{1}{2}$ln$\frac{1-y}{1+y}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com