3.設(shè)正實(shí)數(shù)x,y滿足xy=$\frac{x-4y}{x+y}$,則y的最大值是$\sqrt{5}$-2.

分析 正實(shí)數(shù)x,y滿足xy=$\frac{x-4y}{x+y}$,化為yx2+(y2-1)x+4y=0,由于關(guān)于x的方程有正實(shí)數(shù)根,可知△≥0.又x1x2=4>0,可知x1與x2同號,必有x1+x2=$\frac{1-{y}^{2}}{y}$,解得0<y<1.再利用△≥0.解出即可得到最大值.

解答 解:正實(shí)數(shù)x,y滿足xy=$\frac{x-4y}{x+y}$,
化為yx2+(y2-1)x+4y=0,
∵關(guān)于x的方程有正實(shí)數(shù)根,∴△≥0.
又x1x2=$\frac{4y}{y}$=4>0,∴x1與x2同號,
∴x1+x2=$\frac{1-{y}^{2}}{y}$>0,解得0<y<1.
由△≥0.∴(y2-1)2-16y2≥0,
∴(y2+4y-1)(y2-4y-1)≥0.
∵0<y<1,∴y2-4y-1<0,
∴y2+4y-1≤0,
解得0<y≤$\sqrt{5}$-2.
∴實(shí)數(shù)y的最大值為$\sqrt{5}$-2.
故答案為:$\sqrt{5}$-2.

點(diǎn)評 本題考查了一元二次方程有正實(shí)數(shù)根與判別式的關(guān)系、一元二次不等式的解法,考查了轉(zhuǎn)化思想,考查了推理能力和計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,∠A=90°,$\overrightarrow{AB}$=(k,1),$\overrightarrow{AC}$=(2,3),則k的值是(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x、y滿足y=3-$\sqrt{4x-{x}^{2}}$,則使x+2y+2a<0恒成立的a的取值范圍是( 。
A.[$\sqrt{5}-4$,$\sqrt{5}+4$]B.(-∞,-5]C.[-5,+∞)D.(-∞,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在單位圓上有兩個動點(diǎn)P,Q,它們同時從點(diǎn)A(1,0)出發(fā)沿圓周運(yùn)動,已知點(diǎn)P按逆時針方向每秒轉(zhuǎn)$\frac{π}{3}$,點(diǎn)Q按順時針方向每秒轉(zhuǎn)$\frac{π}{6}$,試求它們從出發(fā)后到第五次相遇時各自走過的弧長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=$\frac{x}{{a}^{2}+a+1}$是冪函數(shù),則a=a=0,或a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(Ⅰ)計算:$\frac{{8}^{\frac{2}{3}}×{3}^{lo{g}_{3}2}}{lne-lo{g}_{\frac{1}{64}}4}$;
(Ⅱ)化簡:$\frac{sin(θ-π)•cos(\frac{π}{2}+θ)•cos(2017π-θ)}{sin(θ-\frac{π}{2})•sin(θ+2016π)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=lg(x-1)+lg(x-2)的定義域?yàn)镸,函數(shù)y=lg(x2-3x+2)的定義域?yàn)镹,則 ( 。
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若拋物線y=2x2上兩點(diǎn)A(x1,y1)、B(x2,y2)關(guān)于直線y=x+$\frac{3}{2}$對稱,則x1•x2=(  )
A.$\frac{5}{2}$B.2C.-$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)和上頂點(diǎn)分別為A,B,橢圓的離心率為$\frac{\sqrt{3}}{2}$,且過點(diǎn)(1,$\frac{\sqrt{3}}{2}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,若直線l與該橢圓交于點(diǎn)P,Q兩點(diǎn),直線BQ,AP的斜率互為相反數(shù).
①求證:直線l的斜率為定值;
②若點(diǎn)P在第一象限,設(shè)△ABP與△ABQ的面積分別為S1,S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案