10.已知等差數(shù)列{an}中,等式(m-n)am+n=mam-nan(m、n∈N*)恒成立,運(yùn)用類比思想方法,可知在等比數(shù)列{bn}中,與此類似的等式bm+n=bm$(\frac{_{n}}{_{m}})^{\frac{n}{n-m}}$恒成立.

分析 bn=b1qn-1,bm=b1qm-1,可得qn-m=$\frac{_{n}}{_{m}}$,q=$(\frac{_{n}}{_{m}})^{\frac{1}{n-m}}$,利用bm+n=bmqn,可得結(jié)論.

解答 解:∵bn=b1qn-1,bm=b1qm-1,
∴qn-m=$\frac{_{n}}{_{m}}$,
∴q=$(\frac{_{n}}{_{m}})^{\frac{1}{n-m}}$
∴bm+n=bmqn=bm$(\frac{_{n}}{_{m}})^{\frac{n}{n-m}}$.
故答案為:bm+n=bm$(\frac{_{n}}{_{m}})^{\frac{n}{n-m}}$.

點(diǎn)評 本題考查類比思想,考查等比數(shù)列的通項(xiàng)的性質(zhì),考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察以下式子:
$\begin{array}{l}cos\frac{2π}{3}=-\frac{1}{2};\\ cos\frac{2π}{5}+cos\frac{4π}{5}=-\frac{1}{2};\\ cos\frac{2π}{7}+cos\frac{4π}{7}+cos\frac{6π}{7}=-\frac{1}{2};\end{array}$
按此規(guī)律歸納猜想第5個(gè)的等式為$cos\frac{2π}{11}+cos\frac{4π}{11}+cos\frac{6π}{11}+cos\frac{8π}{11}+cos\frac{10π}{11}=-\frac{1}{2}$.(不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等差數(shù)列{an}前四項(xiàng)中第二項(xiàng)為606,前四項(xiàng)和Sn為2600,則第4項(xiàng)為(  )
A.707B.782C.870D.990

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若代數(shù)式x2-6x+b可化為(x-a)2-1,則b-a的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.H為銳角三角形ABC的垂心,在線段CH上任取一點(diǎn)E,延長CH到F,使HF=CE,作FD⊥BC,EG⊥BH,其中D,G為垂足,M是線段CF的中點(diǎn),O1,O2分別△ABG,△BCH的外接圓圓心,⊙O1,⊙O2的另一交點(diǎn)為N;證明:
(1)A,B,D,G四點(diǎn)共圓;
(2)O1,O2,M,N四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)m、n是不同的直線,α、β是不同的平面,有以下四個(gè)命題:
①若m⊥n,m⊥α,則n∥α     
②若n⊥β,m∥α,α⊥β,則m∥n
③若m⊥α,m∥β,則α⊥β   
④若m∥n,n?α,則m∥α
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.一圓錐側(cè)面展開為半徑為8的半圓,則此圓錐的體積為$\frac{64\sqrt{3}}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)g(x)=ex+e-x+|x|,則滿足g(2x-1)<g(3)的x的取值范圍是( 。
A.(-∞,2)B.(-2,2)C.(-1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若圓x2+y2+2kx+2y+2=0(k>0)與兩坐標(biāo)軸無公共點(diǎn),那么實(shí)數(shù)k的取值范圍是( 。
A.0<k<$\sqrt{2}$B.1<k<$\sqrt{2}$C.0<k<1D.k>$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案