分析 (1)設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),運(yùn)用離心率公式和a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程;
(2)求得橢圓的焦點(diǎn)和左右頂點(diǎn),可設(shè)雙曲線的方程$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m,n>0),求得m,n,即可得到雙曲線的方程.
解答 解:(1)設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得2b=10,e=$\frac{c}{a}$=$\frac{2}{3}$,a2-b2=c2,
解得b=5,a=3$\sqrt{5}$,c=2$\sqrt{5}$,
即有橢圓的方程為$\frac{{x}^{2}}{45}$+$\frac{{y}^{2}}{25}$=1;
(2)設(shè)雙曲線的方程為$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m,n>0),
由橢圓的焦點(diǎn)為(±2$\sqrt{5}$,0),可得m=2$\sqrt{5}$,
由橢圓的左右頂點(diǎn)為(±3$\sqrt{5}$,0),
可得$\sqrt{{m}^{2}+{n}^{2}}$=3$\sqrt{5}$,
解得n=5,
即有雙曲線的方程為$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1.
點(diǎn)評 本題考查橢圓和雙曲線的方程的求法,注意運(yùn)用橢圓的離心率公式和雙曲線的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com