分析 代入周期公式即可求出周期,由系數(shù)為-2可知值域為[-2,2],令y=0即可解出對稱中心的橫坐標,令y=±2解出對稱軸坐標,令$\frac{π}{2}$+2kπ≤3x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ可求出增區(qū)間.
解答 解:T=$\frac{2π}{3}$,
值域為[-2,2];
令y=0得sin(3x-$\frac{π}{6}$)=0,
∴3x-$\frac{π}{6}$=kπ,k∈Z.
解得x=$\frac{kπ}{3}+\frac{π}{18}$,k∈Z.
∴函數(shù)的對稱中心為($\frac{kπ}{3}+\frac{π}{18}$,0).k∈Z.
令|sin(3x-$\frac{π}{6}$)|=1得3x-$\frac{π}{6}$=$\frac{π}{2}$+kπ,k∈Z.
解得x=$\frac{kπ}{3}$+$\frac{2π}{9}$,k∈Z.
∴函數(shù)的對稱軸方程為x=$\frac{kπ}{3}$+$\frac{2π}{9}$,k∈Z.
令$\frac{π}{2}$+2kπ≤3x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z.
解得$\frac{2kπ}{3}$+$\frac{2π}{9}$≤x≤$\frac{2kπ}{3}$+$\frac{5π}{9}$,k∈Z.
∴函數(shù)的單調遞增區(qū)間為[$\frac{2kπ}{3}$+$\frac{2π}{9}$,$\frac{2kπ}{3}$+$\frac{5π}{9}$],k∈Z.
點評 本題考查了三角函數(shù)的周期,對稱中心,對稱軸,和單調區(qū)間,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | $(-∞,\frac{1}{2}]$ | C. | $[\frac{1}{2},2)$ | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com