7.某幾何體的正(主)視圖和側(cè)(左)視圖如圖所示,則該幾何體的體積不可能是( 。
A.$\frac{1}{3}$B.$\frac{π}{6}$C.$\frac{2}{3}$D.1

分析 根據(jù)已知中的正視圖和側(cè)視圖,可得當(dāng)?shù)酌婷婷孀畲笾担酌鏋檎叫,求出幾何體體積的最大值,可得結(jié)論.

解答 解:當(dāng)?shù)酌婷婷孀畲笾,底面為正方形?br />此時(shí)V=$\frac{1}{3}$×1×1×2=$\frac{2}{3}$,
1>$\frac{2}{3}$,
故該幾何體的體積不可能是1,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖是某幾何體的三視圖,
(1)你能想象出它的幾何結(jié)構(gòu)并畫出它的直觀圖嗎?
(2)根據(jù)三視圖的有關(guān)數(shù)據(jù)(單位:mm),計(jì)算這個(gè)幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(c,0),右頂點(diǎn)為A(a,0),過F作x軸的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線,兩垂線交于點(diǎn)D.,若D到直線BC的距離等于a+c,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知在直三棱柱ABC-A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當(dāng)θ變化時(shí),mn的值不可能是(  )
A.$\sqrt{3}$B.4C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{{x}^{\frac{1}{2}}(x>0)}\end{array}\right.$,若f(a)>3,則a的取值范圍是(9,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知復(fù)數(shù)z滿足$\overline{z}$(1-i)=1+i(i是虛數(shù)單位),則z=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N)在函數(shù)y=2x2+x-1的圖象上,則數(shù)列{an}通項(xiàng)公式為an=$\left\{\begin{array}{l}{2,n=1}\\{4n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.雙曲線${x^2}-\frac{y^2}{4}=1$的左焦點(diǎn)F,到其中一條漸近線的距離為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案