分析 首先,求導數(shù),然后,令導數(shù)為非正數(shù),結合二次函數(shù)知識求解.
解答 解:∵f′(x)=[x2-2(a-1)x-2a]•ex,
∵f(x)在[-1,1]上是單調(diào)減函數(shù),
∴f′(x)≤0,x∈[-1,1],
∴x2-2(a-1)x-2a≤0,x∈[-1,1],
設g(x)=x2-2(a-1)x-2a,
∴$\left\{\begin{array}{l}{g(-1)≤0}\\{g(1)≤0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{1+2(a-1)-2a≤0}\\{1-2(a-1)-2a≤0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-1≤0}\\{4a≥3}\end{array}\right.$,
又a≥0,
∴a$≥\frac{3}{4}$,
即有a的取值范圍是[$\frac{3}{4}$,+∞).
點評 本題重點考查導數(shù)在判斷函數(shù)單調(diào)性中的應用,常常利用等價轉化思想,將問題轉化成二次函數(shù)問題,運用二次函數(shù)的圖象和性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8-π}{4}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{2-π}{2}$ | D. | $\frac{4-π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com