【題目】在直角坐標(biāo)系中, ,動點(diǎn)滿足:以為直徑的圓與軸相切.

(1)求點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)的面積之和取得最小值時,求直線的方程.

【答案】(1) ;(2) .

【解析】試題分析:(1)設(shè)點(diǎn),圓心,由圓與軸相切于點(diǎn),得| ,結(jié)合兩點(diǎn)間的距離公式整理可得點(diǎn)P的軌跡方程為
(2)(。┊(dāng)直線l的斜率不存在時,方程為 ,可得

(ⅱ)當(dāng)直線l的斜率存在時,設(shè)方程為 聯(lián)立直線方程與拋物線方程,可得關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系可得

再由 ,結(jié)合等號成立的條件求得的值,進(jìn)一步得到值,則的面積之和取得最小值時,直線的方程可求

試題解析:

(1)設(shè)點(diǎn),圓心

圓與軸相切于點(diǎn),則,

所以

又點(diǎn)的中點(diǎn),所以

所以,整理得: .

所以點(diǎn)的軌跡方程為: .

(2)(。┊(dāng)直線的斜率不存在時,方程為: ,

易得.

(ⅱ)當(dāng)直線的斜率存在時,設(shè)方程為: , , ,

消去并整理得:

所以, ,

所以 ,

當(dāng)且僅當(dāng)時等號成立,又

所以, , ,

所以,解得: ,

因?yàn)?/span>,所以當(dāng)兩個三角形的面積和最小時,

直線的方程為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為鍛煉達(dá)標(biāo)

1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

并通過計(jì)算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為鍛煉達(dá)標(biāo)與性別有關(guān)?

2)在鍛煉達(dá)標(biāo)的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會交流,再從這5人中選出2人作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,左右兩頂點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),滿足直線的斜率之積為,且的最大值為4.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線與過點(diǎn)且與軸垂直的直線交于點(diǎn),過點(diǎn),垂足分別為兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間內(nèi)沒有極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若函數(shù)在區(qū)間的最大值為且最小值為,求的取值范圍.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求C的普通方程和l的傾斜角;

2)設(shè)點(diǎn)lC交于AB兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

15

120

25

220

35

320

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(人)

22

25

29

26

16

12

該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求剩余的2組數(shù)據(jù)中至少有一組是20日的概率;

2)若選取的是120日,25日,220日,35日四組數(shù)據(jù).

①請根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程用分?jǐn)?shù)表示);

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與剩余的檢驗(yàn)數(shù)據(jù)的誤差均不超過1人,則認(rèn)為得到的線性回歸方程是理想的,試問①中所得線性回歸方程是否理想?

附參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐是等邊三角形,,,的中點(diǎn).

1)求證:直線平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)令,討論的單調(diào)性;

2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為4的正方形,為正方形內(nèi)一點(diǎn),它到邊,的距離分別是1,2,平面,是棱上一點(diǎn),且,

1)求直線所成角的余弦值;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案