<pre id="pwr4b"><fieldset id="pwr4b"></fieldset></pre>
<rt id="pwr4b"><div id="pwr4b"></div></rt>
<pre id="pwr4b"><span id="pwr4b"><abbr id="pwr4b"></abbr></span></pre>
2.設(shè)函數(shù)f(x)=x3-6x2+16x-5-sinπx,{an}是公差不為零的等差數(shù)列,若$\sum_{i=1}^{10}$f(ai)=110,則$\sum_{i=1}^{10}$ai=( 。
A.5B.10C.15D.20

分析 由函數(shù)f(x)=(x-2)3+4x+3-sinπ(x-2)=(x-2)3+4(x-2)-sinπ(x-2)+11,可得f(x)-11的圖象關(guān)于(2,0)對(duì)稱,結(jié)合$\sum_{i=1}^{10}$f(ai)=110,可得答案.

解答 解:∵函數(shù)f(x)=(x-2)3+4x+3-sinπ(x-2)=(x-2)3+4(x-2)-sinπ(x-2)+11,
∴f(x+2)-11=x3+4x-sinπx為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,
故f(x)的圖象關(guān)于(2,11)對(duì)稱,
∴f(x)-11的圖象關(guān)于(2,0)對(duì)稱,
∵$\sum_{i=1}^{10}$f(ai)=110,
∴$\sum_{i=1}^{10}$f(ai)-11=0,
故$\sum_{i=1}^{10}$ai=20,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是數(shù)列求和,函數(shù)的對(duì)稱性,根據(jù)已知分析出f(x)-11的圖象關(guān)于(2,0)對(duì)稱,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在實(shí)數(shù)集R上的可導(dǎo)函數(shù),且其導(dǎo)函數(shù)為f′(x),若f′(x)<f(x)在R上恒成立,則不等式ef(x)>f(1)ex上的解集為( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知{an}是遞增的等差數(shù)列,a1=2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2an+an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{x+b}{(2x+1)(x-a)}$為奇函數(shù),則a+b=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正三角形ABC的邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為$\sqrt{3}$,則四面體ABCD外接球的表面積為( 。
A.B.C.D.$\frac{{7\sqrt{7}}}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求由下列函數(shù)的導(dǎo)數(shù)$\frac{dy}{dx}$:
(1)y=$\sqrt{xsinx\sqrt{1-{e}^{x}}}$
(2)y=$\frac{\sqrt{x+2}(3-x)^{4}}{(x+1)^{5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lg(x+$\frac{a}{x}$)(a∈R).
(1)求f(x)的定義域;
(2)若a<0,集合A={y|y=f(x),$\frac{1}{2}$≤x≤2},B=[-1,1],且A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知A(1,-1),B(4,2),P為AB的中點(diǎn),則$\overrightarrow{AP}$的坐標(biāo)為( 。
A.($\frac{3}{2}$,$\frac{3}{2}$)B.($\frac{3}{2}$,-$\frac{1}{2}$)C.(5,4)D.(3,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且$\overrightarrow{M{P}_{0}}$=$\frac{\sqrt{3}}{2}$$\overrightarrow{P{P}_{0}}$,求點(diǎn)M的軌跡方程,并說明軌跡是什么.

查看答案和解析>>

同步練習(xí)冊(cè)答案