分析 由已知數(shù)據(jù)和正弦定理可得sinB,結(jié)合三角形的邊角關(guān)系可得B,進而由三角形的內(nèi)角和可得C
解答 解:∵在△ABC中,a=4$\sqrt{3}$,b=4,A=60°,
∴由正弦定理可得$\frac{a}{sinA}$=$\frac{sinB}$,
∴sinB=$\frac{bsinA}{a}$=$\frac{4×\frac{\sqrt{3}}{2}}{4\sqrt{3}}$=$\frac{1}{2}$,
又∵a=4$\sqrt{3}$>b=4,∴A>B,
∴B=30°
∴C=180°-(A+B)=90°
故答案為:90°
點評 本題考查正弦定理,涉及三角形的大邊對大角,屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第二或第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{3}$ | C. | -$\frac{1}{2}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com