10.用洛必達(dá)法則求下列極限:
(1)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$
(2)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$
(3)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$
(4)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$.

分析 (1)由洛必達(dá)法則化簡(jiǎn)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$=$\underset{lim}{x→0}$$\frac{sinx}{2x}$=$\underset{lim}{x→0}$$\frac{cosx}{2}$=$\frac{1}{2}$;
(2)由洛必達(dá)法則化簡(jiǎn)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$=$\underset{lim}{x→0}$$\frac{{e}^{x}+{e}^{-x}-2}{1-cosx}$=$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}}{sinx}$=$\underset{lim}{x→0}$$\frac{{e}^{x}+{e}^{-x}}{cosx}$=2;
(3)由洛必達(dá)法則化簡(jiǎn)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$=$\underset{lim}{x→{0}^{+}}$$\frac{3\frac{1}{sin3x}cos3x}{\frac{1}{sinx}cosx}$=$\underset{lim}{x→{0}^{+}}$$\frac{3sinxcos3x}{sin3xcosx}$=$\underset{lim}{x→{0}^{+}}$$\frac{3sinx}{sin3x}$=$\underset{lim}{x→{0}^{+}}$$\frac{3cosx}{3cos3x}$=1;
(4)由洛必達(dá)法則化簡(jiǎn)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$=$\underset{lim}{x→0}$$\frac{{e}^{x}-x-1}{x({e}^{x}-1)}$=$\underset{lim}{x→0}$$\frac{{e}^{x}-1}{{e}^{x}-1+x{e}^{x}}$=$\underset{lim}{x→0}$$\frac{{e}^{x}}{{e}^{x}+{e}^{x}+{xe}^{x}}$=$\frac{1}{2}$.

解答 解:(1)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$=$\underset{lim}{x→0}$$\frac{sinx}{2x}$=$\underset{lim}{x→0}$$\frac{cosx}{2}$=$\frac{1}{2}$;
(2)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$=$\underset{lim}{x→0}$$\frac{{e}^{x}+{e}^{-x}-2}{1-cosx}$
=$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}}{sinx}$=$\underset{lim}{x→0}$$\frac{{e}^{x}+{e}^{-x}}{cosx}$=2;
(3)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$=$\underset{lim}{x→{0}^{+}}$$\frac{3\frac{1}{sin3x}cos3x}{\frac{1}{sinx}cosx}$=$\underset{lim}{x→{0}^{+}}$$\frac{3sinxcos3x}{sin3xcosx}$
=$\underset{lim}{x→{0}^{+}}$$\frac{3sinx}{sin3x}$=$\underset{lim}{x→{0}^{+}}$$\frac{3cosx}{3cos3x}$=1;
(4)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$=$\underset{lim}{x→0}$$\frac{{e}^{x}-x-1}{x({e}^{x}-1)}$
=$\underset{lim}{x→0}$$\frac{{e}^{x}-1}{{e}^{x}-1+x{e}^{x}}$=$\underset{lim}{x→0}$$\frac{{e}^{x}}{{e}^{x}+{e}^{x}+{xe}^{x}}$=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了洛必達(dá)法則的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|x2-4x≤0,x∈R},B={y|y=-x2,-1≤x≤2},則(∁RA)∪(∁RB)等于( 。
A.RB.ΦC.{0}D.{x|x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-2ax+1.
(1)若函數(shù)g(x)=loga[f(x)+a](a>0,a≠1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x>0時(shí),恒有不等式$\frac{f(x)}{x}$>lnx成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.己知函數(shù)f(x)與它的導(dǎo)函數(shù)f'(x)滿足x2f'(x)+xf(x)=lnx,且f(e)=$\frac{1}{e}$,則下列結(jié)論正確的是( 。
A.f(x)在區(qū)間(0,+∞)上是減函數(shù)B.f(x)在區(qū)間(0,+∞)上是增函數(shù)
C.f(x)在區(qū)間(0,+∞)上先增后減D.f(x)在區(qū)間(0,+∞)上是先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{2x}{x+1},x∈[{-3,-2}]$
(1)求證:f(x)在[-3,-2]上是增函數(shù);
(2)求f(x)得最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在三棱錐P-ABC中,PA⊥面ABC,∠ABC=90°,若AD⊥PB,垂足為D,求證:AD⊥面BPC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)是奇函數(shù),且f′(0)存在,則x=0是F(x)=$\frac{f(x)}{x}$的(  )
A.無窮間斷點(diǎn)B.可去間斷點(diǎn)C.連續(xù)點(diǎn)D.震蕩間斷點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.給定一函數(shù)f(x),若對(duì)于定義域中的任意數(shù)x,都有f(x)≤a,則稱a為函數(shù)f(x)的上界,把f(x)的最小上界稱為f(x)的上界,記為supf(x),設(shè)當(dāng)-1<t<x時(shí),M(x)=supt2,則M(0)=1,M(x)的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知不等式ax2+bx+24<0的解集為(-∞,-4)∪(2,+∞),求常數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案