19.給定一函數(shù)f(x),若對(duì)于定義域中的任意數(shù)x,都有f(x)≤a,則稱a為函數(shù)f(x)的上界,把f(x)的最小上界稱為f(x)的上界,記為supf(x),設(shè)當(dāng)-1<t<x時(shí),M(x)=supt2,則M(0)=1,M(x)的最小值為1.

分析 求M(0),可取x=0,然后求出t2的范圍,得到M(0)=1;要求M(x)的最小值,先要找出t2的范圍,然后算出t2的上界,進(jìn)而求得M(x)的最小值.

解答 解:對(duì)于定義域中任意數(shù)x,設(shè)當(dāng)-1<t<x時(shí),M(x)=supt2,
取x=0,則當(dāng)-1<t<0時(shí),M(0)=supt2,
由-1<t<0,得0<t2<1,
∴M(0)=supt2=1;
由M(x)=supt2,
又-1<t<x,∴0≤t2≤1或0≤t2≤x2,
當(dāng)|x|<1時(shí),0≤t2<1,M(x)=supt2=1.
當(dāng)|x|≥1時(shí),0≤t2≤x2,∴supt2=x2
又∵M(jìn)(x)=supt2,∴M(x)=x2
∵x2≥1,∴M(x)≥1.再結(jié)合x小于1的情況,得出的M(x)的范圍依然是M(x)≥1,
∴M(x)的最小值應(yīng)該是1.
故答案為:1;1.

點(diǎn)評(píng) 本題是新定義題,考查了函數(shù)與方程的綜合應(yīng)用,關(guān)鍵是考生對(duì)題意的理解,題目設(shè)置難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知離心率為$\frac{\sqrt{3}}{3}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和直線l:$\sqrt{3}$x+2$\sqrt{2}$y+6=0,其中橢圓C經(jīng)過點(diǎn)(1,$\frac{2\sqrt{3}}{3}$),點(diǎn)P是橢圓C上一動(dòng)點(diǎn),直線l與兩坐標(biāo)軸的交點(diǎn)分別為A,B.
(1)求與橢圓C相切平行于直線l的直線方程;
(2)求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用洛必達(dá)法則求下列極限:
(1)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$
(2)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$
(3)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$
(4)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.討論函數(shù)y=loga|x-2|的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=2cos2x-1的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=x2+bx+c,若f(3)=f(5),則b=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ex-1+x-2(e為自然對(duì)數(shù)的底數(shù)).g(x)=x2-ax-a+3.若存在實(shí)數(shù)x1,x2,使得f(x1)=g(x2)=0.且|x1-x2|≤1,則實(shí)數(shù)a的取值范圍是[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則下列命題中正確的是(1),(2),(3).(填寫所有正確命題的編號(hào))
(1)Sn=an2+bn(a,b∈R),則{an}為等差數(shù)列;(2)若Sn=1+(-1)n+1,則{an}是等比數(shù)列;(3){an}為等比數(shù)列,且$\underset{lim}{n→∞}$Sn=2012,則$\underset{lim}{n→∞}$an=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列結(jié)論:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,$y={x^{\frac{1}{2}}}$,y=(x-1)2,y=x3中有三個(gè)是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(diǎn)A(1,0)對(duì)稱;
④已知函數(shù)$f(x)=\left\{\begin{array}{l}{3^{x-2}},x≤2\\{log_3}(x-1),x>2\end{array}\right.$則方程 $f(x)=\frac{1}{2}$有兩個(gè)不相等的實(shí)數(shù)根,
其中正確結(jié)論的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案