20.已知不等式ax2+bx+24<0的解集為(-∞,-4)∪(2,+∞),求常數(shù)a,b的值.

分析 根據(jù)解集確定方程的根,結(jié)合韋達(dá)定理求出a,b的值即可.

解答 解:若不等式ax2+bx+24<0的解集為(-∞,-4)∪(2,+∞),
則-4,2是方程ax2+bx+24=0的兩個根,
∴-$\frac{a}$=-2,$\frac{24}{a}$=-8,解得:a=-3,b=-6.

點評 本題考查一元二次方程的根的分布與系數(shù)的關(guān)系,不等式的解集問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用洛必達(dá)法則求下列極限:
(1)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$
(2)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$
(3)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$
(4)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ex-1+x-2(e為自然對數(shù)的底數(shù)).g(x)=x2-ax-a+3.若存在實數(shù)x1,x2,使得f(x1)=g(x2)=0.且|x1-x2|≤1,則實數(shù)a的取值范圍是[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)數(shù)列{an}的前n項和為Sn,則下列命題中正確的是(1),(2),(3).(填寫所有正確命題的編號)
(1)Sn=an2+bn(a,b∈R),則{an}為等差數(shù)列;(2)若Sn=1+(-1)n+1,則{an}是等比數(shù)列;(3){an}為等比數(shù)列,且$\underset{lim}{n→∞}$Sn=2012,則$\underset{lim}{n→∞}$an=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個球的體積是100cm3,試計算它的表面積(π取3.14,結(jié)果精確到1cm3,可用計算器).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\frac{tanα}{tanα-1}$=2,則cosα=±$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),且對任意x,y∈(0,+∞)恒有f(xy)=f(x)+f(y)成立,
(1)求f(1)的值;
(2)證明:當(dāng)x>0時,f($\frac{1}{x}$)=-f(x);
(3)判定函數(shù)g(t)=t+$\frac{4}{t+2}$.當(dāng)t≥1時的單調(diào)性(寫出論證過程),并求對一切實數(shù)t≥1,恒有f(t+$\frac{4}{t+2}$)≥f(m)成立的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列結(jié)論:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,$y={x^{\frac{1}{2}}}$,y=(x-1)2,y=x3中有三個是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點A(1,0)對稱;
④已知函數(shù)$f(x)=\left\{\begin{array}{l}{3^{x-2}},x≤2\\{log_3}(x-1),x>2\end{array}\right.$則方程 $f(x)=\frac{1}{2}$有兩個不相等的實數(shù)根,
其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x+\frac{π}{4})=sin(2x+\frac{π}{4})$
(Ⅰ)求f(x)解析式及其對稱中心;
(Ⅱ)若$a∈[-\frac{π}{4},\frac{7π}{24}]$,求f(a)的值范圍.

查看答案和解析>>

同步練習(xí)冊答案