分析 求出兩圓的標準方程,求出圓心和半徑,根據(jù)圓心距離和半徑之間的關(guān)系進行判斷即可.
解答 解:兩圓的標準方程為C1:(x+1)2+(y+4)2=25,圓C2:(x+2)2+(y-2)2=10,
則圓心坐標C1:(-1,-4),C2:(-2,2),
半徑R=5,r=$\sqrt{10}$,
圓心距離|C1C2|=$\sqrt{(-2+1)^{2}+(-4-2)^{2}}$=$\sqrt{1+36}$=$\sqrt{37}$,
而R+r=5+$\sqrt{10}$,R-r=5-$\sqrt{10}$,
而R-r<|C1C2|<R+r,
即圓C1與圓C2相交.
點評 本題主要考查圓與圓的位置關(guān)系的判斷,根據(jù)圓心距和半徑之間的關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或$\sqrt{3}$ | B. | 2或$\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2cos(2x+$\frac{π}{4}$) | B. | f(x)=-$\sqrt{2}$cos(x-$\frac{π}{4}$) | C. | f(x)=-$\sqrt{2}$cos(2x-$\frac{3π}{4}$) | D. | f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com