分析 先根據(jù)約束條件畫出可行域,判斷可行域的形狀,然后求解三角形的面積,設(shè)z=|x-3y|,再利用z的幾何意義求最值,只需求出直線z=x-3y過可行域內(nèi)的點A時,從而得到z=|x-3y|的最大值即可.
解答 解:依題意,畫出可行域(如圖示),
$\left\{\begin{array}{l}{x=-2}\\{y=x}\end{array}\right.$,可得B(-2,-2),$\left\{\begin{array}{l}{x=-2}\\{x+3y=4}\end{array}\right.$,可得A(-2,2);
$\left\{\begin{array}{l}{y=x}\\{x+3y=4}\end{array}\right.$,可得C(1,1);
可行域是三角形,面積為:$\frac{1}{2}×4×3$=6;
則對于目標(biāo)函數(shù)z=x-3y,
當(dāng)直線經(jīng)過A(-2,2)時,
z=|x-3y|,取到最大值,Zmax=8.
故答案為:6;8.
點評 本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點、定出最優(yōu)解.
科目:高中數(shù)學(xué) 來源: 題型:解答題
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.6 | 3.0 | 3.3 | 4.1 | 4.5 | 4.9 | 5.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$ | B. | $\overrightarrow{AD}$+$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CE}$ | C. | $\overrightarrow{MB}$-$\overrightarrow{MA}$+$\overrightarrow{BD}$ | D. | $\overrightarrow{CB}$+$\overrightarrow{AD}$-$\overrightarrow{BC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $-\frac{24}{7}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com