5.下列各式中不能化簡(jiǎn)為$\overrightarrow{AD}$的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$B.$\overrightarrow{AD}$+$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CE}$C.$\overrightarrow{MB}$-$\overrightarrow{MA}$+$\overrightarrow{BD}$D.$\overrightarrow{CB}$+$\overrightarrow{AD}$-$\overrightarrow{BC}$

分析 利用向量加法運(yùn)算法則,直接求解.

解答 解:在A中,$\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{BC}$=$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}$=$\overrightarrow{AD}$,故A不成立;
在B中,$\overrightarrow{AD}+\overrightarrow{EB}+\overrightarrow{BC}+\overrightarrow{CE}$=$\overrightarrow{AD}$+$\overrightarrow{0}$=$\overrightarrow{AD}$,故B不成立;
在C中,$\overrightarrow{MB}-\overrightarrow{MA}+\overrightarrow{BD}$=$\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{BD}$=$\overrightarrow{AD}$,故C不成立;
在D中,$\overrightarrow{CB}+\overrightarrow{AD}-\overrightarrow{BC}$=2$\overrightarrow{CB}+\overrightarrow{AD}$$≠\overrightarrow{AD}$,故D成立.
故選:D.

點(diǎn)評(píng) 本題考查向量的運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意加法法則的合理運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α是第三象限角,sinα=-$\frac{5}{13}$,則cosα=(  )
A.-$\frac{5}{13}$B.-$\frac{12}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若關(guān)于x的不等式2${\;}^{{x}^{2}-ax}$>($\frac{1}{2}$)2a在實(shí)數(shù)集上恒成立,則實(shí)數(shù)a的取值范圍(0,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\end{array}\right.$,則z=3x+y的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知球O的體積為36π,則該球的內(nèi)接圓錐的體積的最大值為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}滿足a1=2,an+1=2an-n+1,n∈N*
(1)求數(shù)列{an-n}的通項(xiàng)公式;
(2)若數(shù)列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+2)}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,則滿足條件的可行域的面積為6,z=|x-3y|的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時(shí),函數(shù)解析式f(x)=$\frac{1}{{4}^{x}}$-$\frac{a}{{2}^{x}}$(a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)為F1、F2,離心率為$\frac{\sqrt{3}}{3}$,過F2的直線l交C與A、B兩點(diǎn),若△AF1B的周長(zhǎng)為$8\sqrt{3}$,則C的方程為(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案