分析 根據(jù)$\frac{1}{{a}^{2}(b+c)}$=$\frac{bc}{a(b+c)}$=$\frac{{(bc)}^{2}}{b+c}$ ①,同理可得 $\frac{1}{^{2}(c+a)}$=$\frac{{(ac)}^{2}}{a+c}$ ②,$\frac{1}{{c}^{2}(a+b)}$=$\frac{{(ab)}^{2}}{a+b}$ ③,把①②③相加,再利用基本不等式求得 $\frac{1}{{a}^{2}(b+c)}$+$\frac{1}{^{2}(c+a)}$+$\frac{1}{{c}^{2}(a+b)}$ 的最小值.
解答 解:∵abc=1,∴$\frac{1}{{a}^{2}(b+c)}$=$\frac{bc}{a(b+c)}$=$\frac{{(bc)}^{2}}{b+c}$ ①,
同理可得 $\frac{1}{^{2}(c+a)}$=$\frac{{(ac)}^{2}}{a+c}$ ②,$\frac{1}{{c}^{2}(a+b)}$=$\frac{{(ab)}^{2}}{a+b}$ ③,
把①②③相加可得 $\frac{1}{{a}^{2}(b+c)}$+$\frac{1}{^{2}(c+a)}$+$\frac{1}{{c}^{2}(a+b)}$=$\frac{{(bc)}^{2}}{b+c}$+$\frac{{(ac)}^{2}}{a+c}$+$\frac{{(ab)}^{2}}{a+b}$≥3$\root{3}{\frac{1}{(a+b)(b+c)(a+c)}}$,
當且僅當a=b=c=1時,取等號,故 $\frac{1}{{a}^{2}(b+c)}$+$\frac{1}{^{2}(c+a)}$+$\frac{1}{{c}^{2}(a+b)}$≥$\frac{3}{2}$,
即$\frac{1}{{a}^{2}(b+c)}$+$\frac{1}{^{2}(c+a)}$+$\frac{1}{{c}^{2}(a+b)}$的最小值為$\frac{3}{2}$.
點評 本題主要考查柯西不等式、基本不等式,式子的變形是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com