15.計(jì)算0.5-2×($\frac{27}{8}$)${\;}^{\frac{1}{3}}$+($\root{4}{9}$)2

分析 直接利用有理指數(shù)冪的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:0.5-2×($\frac{27}{8}$)${\;}^{\frac{1}{3}}$+($\root{4}{9}$)2
=4×$\frac{3}{2}$+3
=9.

點(diǎn)評(píng) 本題考查有理指數(shù)冪的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知tanα和tanβ是方程x2-5x+6=0的兩個(gè)根,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=-2,則|$\overrightarrow{a}$+$\overrightarrow$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知A={x|y=$\frac{1}{x-2}$+1nx},B={y|y=$\sqrt{16-{2}^{x}}$},則A∩B=( 。
A.(0,4]B.[0,2)U(2,4)C.(0,2)U(2,4)D.[0,2)U(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ<π)滿足f(-x)=f(x),其圖象與直線y=1的某兩個(gè)交點(diǎn)橫坐標(biāo)分別為x1,x2,且|x1-x2|的最小值為π,則( 。
A.$ω=\frac{1}{2}$,φ=$\frac{π}{4}$B.ω=2,φ=$\frac{π}{4}$C.$ω=\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=2,φ=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,已知△ABC中,點(diǎn)M在線段AC上,點(diǎn)P在線段BM上且滿足$\frac{AM}{MC}=\frac{MP}{PB}$=2,若$|\overrightarrow{AB}|$=2,$|\overrightarrow{AC}|$=3,∠BAC=120°,則$\overrightarrow{AP}•\overrightarrow{BC}$的值為(  )
A.-2B.2C.$\frac{2}{3}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在條件$\left\{\begin{array}{l}{x>0}\\{y≤1}\\{2x-2y+1≤0}\end{array}\right.$下,目標(biāo)函數(shù)z=2x+y則函數(shù)z的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=|x-1|與y=lgx圖象交點(diǎn)個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)$f(x)=\frac{2x-3}{3x+1},x∈(-1,-\frac{1}{3})∪(-\frac{1}{3},1)$的值域是( 。
A.$(-∞,-\frac{1}{4})∪(\frac{5}{2},+∞)$B.$(-\frac{1}{4},\frac{5}{2})$C.$(-\frac{1}{4},0)∪(\frac{5}{2},+∞)$D.$(-∞,-\frac{1}{4})∪(0,\frac{5}{2})$

查看答案和解析>>

同步練習(xí)冊(cè)答案