A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2}{3}$ |
分析 依題意,在△F1PF2中,∠F1PF2=60°,|F1P|+|PF2|=2a=2$\sqrt{2}$,|F1F2|=2c=2,利用余弦定理可求得|F1P|•|PF2|的值,從而可求得△F1PF2的面積.
解答 解:橢圓方程$\frac{{x}^{2}}{2}$+y2=1,
∴a=$\sqrt{2}$,b=1,c=1.
又∵P為橢圓上一點,∠F1PF2=60°,F(xiàn)1、F2為左右焦點,
∴|F1P|+|PF2|=2a=2$\sqrt{2}$,|F1F2|=2c=2,
∴|F1F2|2=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°,
=8-3|F1P|•|PF2|,
∴8-3|F1P|•|PF2|=4,
∴|F1P|•|PF2|=$\frac{4}{3}$.
∴S△F1PF2=$\frac{1}{2}$|F1P|•|PF2|sin60°,
=$\frac{1}{2}$×$\frac{4}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$.
故答案選:C.
點評 本題考查橢圓的簡單性質(zhì),考查余弦定理的應(yīng)用與三角形的面積公式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=2sinx+xcosx | B. | y′=xcosx | C. | y′=xcosx-sinx | D. | y′=sinx+xcosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1998立方尺 | B. | 2012立方尺 | C. | 2112立方尺 | D. | 2324立方尺 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$或2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com