1.已知一正三棱臺(tái)上底邊長(zhǎng)為3,下底邊長(zhǎng)為6,高為3,則此三棱臺(tái)體積為( 。
A.$\frac{{63\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{{45\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{4}$

分析 直接利用棱臺(tái)的體積公式,即可得出結(jié)論.

解答 解:棱臺(tái)的體積:$\frac{1}{3}×3×(\frac{\sqrt{3}}{4}×{3}^{2}+\frac{\sqrt{3}}{4}×{6}^{2}+\frac{\sqrt{3}}{4}×3×6)$=$\frac{63\sqrt{3}}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查棱柱、棱錐、棱臺(tái)的體積,考查計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在數(shù)列{an}中,已知a1=2,對(duì)于任意的p、q∈Z+,都有ap+aq=ap+q成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an2bn=1,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)之和.求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知直線l:$y=x+\sqrt{6}$,圓O:x2+y2=5,橢圓E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{3}$,直線l被圓O截得的弦長(zhǎng)與橢圓的短軸長(zhǎng)相等.
(1)求橢圓E的方程;
(2)過(guò)圓O上任意一點(diǎn)$P({x_0},{y_0})({x_0}≠±\sqrt{2},{y_0}≠±\sqrt{3})$作兩條直線與橢圓E分別只有唯一一個(gè)公共點(diǎn),求證:這兩直線斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|F1F2|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.有一智能機(jī)器人在平面上行進(jìn)中始終保持與點(diǎn)F(1,0)的距離和到直線x=-1的距離相等,若機(jī)器人接觸不到過(guò)點(diǎn)P(-1,0)且斜率為k的直線,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.△ABC是邊長(zhǎng)為2的等邊三角形,已知向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow{AB}=2\overrightarrow a$,$\overrightarrow{AC}=2\overrightarrow a+\overrightarrow b$,求$\overrightarrow a•\overrightarrow b$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,平行六面體ABCD-A1B1C1D1中,AC與BD交于點(diǎn)M,設(shè)$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}$=$\overrightarrow c$,則$\overrightarrow{{B_1}M}$=( 。
A.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.工藝扇面是中國(guó)書畫一種常見(jiàn)的表現(xiàn)形式,某班級(jí)想用布料制作一面如圖所示的扇面.已知扇面展開(kāi)的中心角為120°,外圓半徑為50cm,內(nèi)圓半徑為20cm,則制作這樣的一面扇面需要的布料為2198cm2(用數(shù)字作答,π取3.14).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知命題p:x2-8x-20≤0,命題q:x2-2x+1-a2≥0(a>0),若¬p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案