11.已知平面向量$\overrightarrow{a}$=(sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$,cos2$\frac{ωx}{2}$),$\overrightarrow$=(cosφ,sinφ),函數(shù)f(x)=2A($\overrightarrow{a}$•$\overrightarrow$)-Asinφ+k(其中A>0,|φ|<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x);
(2)如何由函數(shù)y=-sinx的圖象得到函數(shù)y=f(x)的圖象.

分析 (1)由條件利用兩個向量的數(shù)量積公式,三角恒等變換,化簡f(x)的解析式,由最大值和最小值求得k和A的值,由周期求出ω,由五點法作圖求出φ的值,即可確定f(x)的解析式.
(2)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.

解答 解:(1)函數(shù)f(x)=2A($\overrightarrow{a}$•$\overrightarrow$)-Asinφ+k=2A•[sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$cosφ+cos2$\frac{ωx}{2}$sinφ]-Asinφ+k
=A•[sinωxcosφ+sinφ+sinφcosωx]-Asinφ+k=A[sin(ωx+φ)+sinφ]-Asinφ+k=Asin(ωx+φ)+k,
結合f(x)的圖象可得k=$\frac{3-1}{2}$=1,故f(x)=Asin(ωx+φ)+1.
由$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{7π}{3}$-$\frac{π}{3}$=2π,求得ω=$\frac{1}{2}$;再根據(jù)五點法作圖可得$\frac{1}{2}$•$\frac{π}{3}$+φ=$\frac{π}{2}$,A=$\frac{3-(-1)}{2}$=2,
求得φ=$\frac{π}{3}$,故f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$)+1.
(2)把函數(shù)y=-sinx=sin(x+π)的圖象上點的橫坐標變?yōu)樵瓉淼?倍,得到y(tǒng)=sin($\frac{1}{2}$x+π)的圖象;
再把所得圖象向右平移$\frac{4π}{3}$個單位,可得y=sin[$\frac{1}{2}$(x-$\frac{4π}{3}$)+π]=sin($\frac{1}{2}$x+$\frac{π}{3}$)的圖象;
再把所得圖象的點的縱坐標變?yōu)樵瓉淼?倍,得到y(tǒng)=2sin($\frac{1}{2}$x+$\frac{π}{3}$)的圖象;
再把所得圖象向上平移1個單位,可得f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$)+1的圖象.

點評 本題主要考查兩個向量的數(shù)量積公式,三角恒等變換,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示(單位長度:cm),則此幾何體的表面積是(  )
A.(80+16$\sqrt{2}$)cm2B.96cm2C.(96+16$\sqrt{2}$)cm2D.112cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=|ex-e2x|,方程f2(x)+af(x)+a-1=0有四個不同的實數(shù)根,則a的取值范圍為( 。
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.(-∞,e2C.(-2e2,1-e2D.(1-e2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)${\;}^{\frac{1}{2}}$,c=logπ($\root{3}{e}$),則a>b>c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ln$\frac{1+x}{1-x}$.
(1)求函數(shù)f(x)的定義域;
(2)求使函數(shù)f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若f(x)+2f($\frac{1}{x}$)=3x,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知 f(x)=2+1og2x,x∈[1,4].求y=[f(x)]2-2f(x)的最大值及此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow a$=(cos(x+$\frac{π}{8}$),sin2(x+$\frac{π}{8}$)),$\overrightarrow b$=(sin(x+$\frac{π}{8}$),1),函數(shù)f(x)=1-2$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的解析式和最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)若方程f(x)+2m=0在[$\frac{π}{4}$,$\frac{7π}{8}$]有兩個實根,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(α)=$\frac{sin(π-α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{cos(-π-α)•cos(-α+\frac{3π}{2})}$
(1)求f(-$\frac{31π}{3}$)的值;
(2)若f(α)=$\frac{3}{5}$,求sinα,tanα的值.
(3)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值.

查看答案和解析>>

同步練習冊答案