4.已知點(diǎn)A為雙曲線(xiàn)$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$右支上一點(diǎn),F(xiàn)1,F(xiàn)2為雙曲線(xiàn)的左右焦點(diǎn),AF1交雙曲線(xiàn)左支于點(diǎn)B,若AB=BF2,則$\frac{{|{A{F_2}}|}}{{|{B{F_1}}|}}$=( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

分析 作出雙曲線(xiàn)的圖象,利用雙曲線(xiàn)的定義建立方程關(guān)系進(jìn)行求解即可.

解答 解:由雙曲線(xiàn)的定義得|AF1|-|AF2|=2,
|BF2|-|BF1|=2a,
得|AF1|-|AF2|=|BF2|-|BF1|,
即|AB|+|BF1|-|AF2|=|BF2|-|BF1|,
∵AB=BF2
∴|BF1|-|AF2|=-|BF1|,
則|AF2|=2|BF1|,
則$\frac{{|{A{F_2}}|}}{{|{B{F_1}}|}}$=2,
故選:D

點(diǎn)評(píng) 本題主要考查雙曲線(xiàn)的性質(zhì)的應(yīng)用,根據(jù)雙曲線(xiàn)的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=$\frac{1}{l{og}_{2}(x-2)}$的定義域?yàn)椋?,3)∪(3,+∞),值域(-∞,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知不等式x2-3x+t<0的解集為{x|1<x<m,x∈R},求t,m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知m>0且m≠1,則logmn>0是(1-m)(1-n)>0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若對(duì)?n∈N*,Sn=(n+1)an-n(n+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{n-1}}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A,B是單位圓上的兩點(diǎn),O為圓心,且∠AOB=120°,MN是圓O的一條直徑,點(diǎn)C在圓內(nèi),且滿(mǎn)足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),則$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值為(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如表為某班成績(jī)的次數(shù)分配表.已知全班共有38人,且眾數(shù)為50分,中位數(shù)為60分,求x2-2y之值為何( 。
成績(jī)(分)20304050607090100
次數(shù)(人)235x6y34
A.33B.50C.69D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p為真命題,命題q為假命題,則下列命題為真命題的是( 。
A.¬pB.p∧qC.¬p∨qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax-$\frac{1}{2}$x2-aln(x+1)(a>0),g(x)=ex-x-1,曲線(xiàn)y=f(x)與y=g(x)在原點(diǎn)處的公共的切線(xiàn).
(1)若x=0為函數(shù)f(x)的極大值點(diǎn),求f(x)的單調(diào)區(qū)間(用a表示);
(2)若?x≥0,g(x)≥f(x)+$\frac{1}{2}$x2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案