4.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長分別為a、b、c,已知$tanB=\frac{3}{4}$,bsinC=6.
(Ⅰ)求邊長c的值;
(Ⅱ)若△ABC的面積S=24,求△ABC的周長l.

分析 (Ⅰ)由正弦定理得csinB=bsinC=6,又$tanB=\frac{3}{4}$,可解得sinB的值,即可得解.
(Ⅱ)由三角形面積公式可求得a的值,由余弦定理可求b,即可求得△ABC的周長.

解答 解:(Ⅰ)由正弦定理得 csinB=bsinC=6,
又$tanB=\frac{3}{4}$,可知B為銳角,可得:cosB=$\sqrt{\frac{1}{1+ta{n}^{2}B}}$=$\frac{4}{5}$,
所以$sinB=\frac{3}{5}$,
所以c=10.
(Ⅱ)由$S=\frac{1}{2}absinC=24$,得a=8,
由余弦定理 b2=a2+c2-2accosB=36,
所以b=6.
故△ABC的周長l=a+b+c=24.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,同角三角函數(shù)關(guān)系式的綜合應(yīng)用,熟練掌握和靈活應(yīng)用相關(guān)公式及定理是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.全集U={1,2,3,5,6,8},集合A={ 1,2,5,8 },B={2},則集合(∁UA)∪B=( 。
A.{2,3,6}B.{ 0,3,6}C.{2,1,5,8}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若函數(shù)f(x)=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大$\frac{a}{4}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+n+1(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)等差數(shù)列{bn}各項(xiàng)均為正數(shù),滿足b1+b2+b3=18,且a1+b1+2,a2+b2,a3+b3-3成等比數(shù)列,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an+1-2an}(n∈N*)是公比為2的等比數(shù)列,其中a1=1,a2=4.
(Ⅰ)證明:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$} 是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,λ),$\overrightarrow$=(λ,4),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)λ=( 。
A.0B.±2C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,an+1=$\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}$(n∈N*)關(guān)于下列命題:
①若a1=$\sqrt{3}$,則a3=0;
②對(duì)任意的a1(a1≠$\frac{\sqrt{3}}{3}$),均有an+3=an(n∈N*
③若a1=tanα,a2=tanβ,a3=tanγ,α、β、γ∈(0,2π),則α、β、γ成等差數(shù)列;
④當(dāng)$\frac{\sqrt{3}}{3}$<a1<$\sqrt{3}$時(shí),S3n<0
其中正確的命題有( 。
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|y=1n(4x-x2)},集合B={y|y=a•3x-9x,a∈R}.
(1)若實(shí)數(shù)a=2,求A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+m|,g(x)=|x-2m|.
(1)若不等式f(1)+g(1)>5成立,求實(shí)數(shù)m的取值范圍;
(2)求函數(shù)f(x+m)+g($\frac{2}{x}$)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案