14.已知角α的終邊經(jīng)過點(diǎn)P(-1,2),則$\frac{sin(π+α)+2cos(2π-α)}{sinα+sin(\frac{π}{2}+α)}$=-4.

分析 由條件利用任意角的三角函數(shù)的定義求得cosα、sinα的值,再利用誘導(dǎo)公式求得要求式子的值.

解答 解:由角α的終邊經(jīng)過點(diǎn)(-1,2),
可得cosα=-$\frac{\sqrt{5}}{5}$,sinα=$\frac{2\sqrt{5}}{5}$,
則$\frac{sin(π+α)+2cos(2π-α)}{sinα+sin(\frac{π}{2}+α)}$=$\frac{-sinα+2cosα}{sinα+cosα}$=$\frac{\frac{-2\sqrt{5}}{5}+2×(-\frac{\sqrt{5}}{5})}{\frac{2\sqrt{5}}{5}-\frac{\sqrt{5}}{5}}$=-4.
故答案為:-4.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=8x的焦點(diǎn)為F,點(diǎn)P(x,y)為該拋物線上的動點(diǎn),又已知點(diǎn)A(-2,0),則$\frac{|PA|}{|PF|}$的取值范圍是(  )
A.[3,+∞)B.(1,2]C.[1,4]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-a≤0}\\{x-y≥0}\\{2x+y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最大值為2,則實(shí)數(shù)a的值為( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=4sinxsin(x+$\frac{π}{3}$)-1(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a=log${\;}_{\frac{1}{3}}$2,b=2${\;}^{\frac{1}{3}}$,c=($\frac{1}{3}$)2,則a,b,c的大小關(guān)系為a<c<b(用“<”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\overrightarrow{a}$=(1,-x),$\overrightarrow$=(x2,4cosθ),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1,θ∈[-π,π].
(1)當(dāng)θ=$\frac{2}{3}$π時(shí),該函數(shù)f(x)在[-2,2]上的最大值和最小值;
(2)若f(x)在區(qū)間[1,$\sqrt{2}$]上不單調(diào),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.課本上的探索與研究中有這樣一個問題:
已知△ABC的面積為S,外接圓的半徑為R,∠A,∠B,∠C的對邊分別為a,b,c,用解析幾何的方法證明:$R=\frac{abc}{4S}$.
小東根據(jù)學(xué)習(xí)解析幾何的經(jīng)驗(yàn),按以下步驟進(jìn)行了探究:
(1)在△ABC所在的平面內(nèi),建立直角坐標(biāo)系,使得△ABC三個頂點(diǎn)的坐標(biāo)的表示形式較為簡單,并設(shè)出表示它們坐標(biāo)的字母;
(2)用表示△ABC三個頂點(diǎn)坐標(biāo)的字母來表示△ABC的外接圓半徑、△ABC的三邊和面積;
(3)根據(jù)上面得到的表達(dá)式,消去表示△ABC的三個頂點(diǎn)的坐標(biāo)的字母,得出關(guān)系式.
在探究過程中,小東遇到了以下問題,請你幫助完成:
(Ⅰ)為了△ABC的三邊和面積表達(dá)式及外接圓方程盡量簡單,小東考慮了如下兩種建系方式;你選擇第①種建系方式.
(Ⅱ)根據(jù)你選擇的建系方式,完成以下部分探究過程:
(1)設(shè)△ABC的外接圓的一般式方程為x2+y2+Dx+Ey+F=0;
(2)在求解圓的方程的系數(shù)時(shí),小東觀察圖形發(fā)現(xiàn),由圓的幾何性質(zhì),可以求出圓心的橫坐標(biāo)為$\frac{m+n}{2}$,進(jìn)而可以求出D=-m-n;
(3)外接圓的方程為x2+y2+(-m-n)x+(-p-$\frac{mn}{p}$)y+mn=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列命題,其中正確的是①(填寫序號).
①若m⊥α,m∥n,則n⊥α;
②若m∥n,m?α,n?β,則α∥β;
③若直線m∥n,則直線m就平行于平面α內(nèi)的無數(shù)條直線;
④若∠ABC和∠A1B1C1的邊AB∥A1B1,AC∥A1C1,則∠ABC=∠A1B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(logax)=log${\;}_{a}^{2}$x-alogax2+1(a>0且a≠1).
(1)求y=f(x)的解析式及其定義域;
(2)若函數(shù)y=f(x)-a在(0,1)內(nèi)有且只有一個零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案