分析 (1)使用誘導(dǎo)公式化簡(jiǎn)f(α),使用和角公式化簡(jiǎn)g(x)利用正弦函數(shù)的性質(zhì)得出答案.
(2)根據(jù)x的范圍和正弦函數(shù)的性質(zhì)得出g(x)的最值.
解答 解:(1)$f(α)=\frac{-cosαsinα(-tanα)}{-tanαsinα}=-cosα$=-$\frac{\sqrt{3}}{2}$,
又α是銳角,∴α=$\frac{π}{6}$.
∴g(x)=sinx+cos(x-$\frac{π}{6}$)=$\frac{3}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx=$\sqrt{3}$sin(x+$\frac{π}{6}$).
∴g(x)的最小正周期為T=2π.
由$x+\frac{π}{6}=kπ,k∈z$得對(duì)稱中心為$(kπ-\frac{π}{6},0),(k∈Z)$,
(2)∵x∈$[0,\frac{π}{2}]$,∴x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$].
∴當(dāng)x+$\frac{π}{6}$=$\frac{π}{2}$ 即x=$\frac{π}{3}$時(shí),g(x)的最大值為$\sqrt{3}$.
當(dāng)x+$\frac{π}{6}$=$\frac{π}{6}$即x=0時(shí),g(x)的最小值為$\frac{{\sqrt{3}}}{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{5}{2}$ | B. | 0 | C. | $\frac{5}{3}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
A. | 2.3 | B. | 3.2 | C. | 4.2 | D. | 2.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1} | B. | {0} | C. | {0,1} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{6}$,$\frac{1}{2}$) | B. | $(\frac{π}{3},\frac{1}{2})$ | C. | ($\frac{π}{6}$,$\frac{1}{2}$),$(\frac{5π}{6},\frac{1}{2})$ | D. | $(\frac{π}{3},\frac{1}{2})$,$(\frac{2π}{3},\frac{1}{2})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com