3.設(shè)a=21.2,b=log38,c=0.83.1,則( 。
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

分析 利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)求解.

解答 解:∵a=21.2>21=2,
1=log33<b=log38<log39=2,
c=0.83.1<0.81=0.8,
∴c<b<a.
故選:C.

點(diǎn)評 本題考查三個數(shù)大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某種游戲中,黑、黃兩個“電子狗”從棱長為1的正方體ABCD-A1B1C1D1的頂點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.黑“電子狗”爬行的路線是AA1→A1D1→,黃“電子狗”爬行的路線是AB→BB1→,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數(shù)).設(shè)黑“電子狗”爬完2016段、黃“電子狗”爬完2015段后各自停止在正方體的某個頂點(diǎn)處,這時黑、黃“電子狗”間的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若點(diǎn)P(1,-1)在角φ(-π<φ<0)終邊上,則函數(shù)y=3cos(x+φ),x∈[0,π]的單調(diào)減區(qū)間為[$\frac{π}{4}$,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$\frac{π}{2}$<α<π,若sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{2π}{3}$+α)=(  )
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定理:“實(shí)數(shù)m,n為常數(shù),若函數(shù)h(x)滿足h(m+x)+h(m-x)=2n,則函數(shù)y=h(x)的圖象關(guān)于點(diǎn)(m,n)成中心對稱”.
(Ⅰ)已知函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$的圖象關(guān)于點(diǎn)(1,b)成中心對稱,求實(shí)數(shù)b的值;
(Ⅱ)已知函數(shù)g(x)滿足g(2+x)+g(-x)=4,當(dāng)x∈[0,2]時,都有g(shù)(x)≤3成立,且當(dāng)x∈[0,1]時,g(x)=2k(x-1)+1,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC三個頂點(diǎn)的坐標(biāo)分別為A(2,0),B(7,0),C(1,2),D為BC的中點(diǎn).
(Ⅰ)求AD所在直線的方程;
(Ⅱ)求△ACD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線l:y=2x+2交拋物線C于A,B兩點(diǎn),P是線段AB的中點(diǎn),過P作x軸的垂直交拋物線C于點(diǎn)Q.
(Ⅰ)若直線l過焦點(diǎn)F,求$\overrightarrow{AF}$•$\overrightarrow{BF}$的值;
(Ⅱ)是否存在實(shí)數(shù)p,使$\overrightarrow{AQ}$⊥$\overrightarrow{BQ}$?若存在,求出p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在四面體ABCD中,E、G分別是CD、BE的中點(diǎn),若$\overrightarrow{AG}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{AC}$,則x+y+z=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow m=({cosA,sinB}),\overrightarrow n=({cosB,-sinA})$,$\overrightarrow m•\overrightarrow n=-cos2C$,且A,B,C分別為△ABC的三邊a,b,c所對的角.
(I)求角C的大;
(Ⅱ)若a+b=2c,且△ABC的面積為$15\sqrt{3}$,求c邊的長.

查看答案和解析>>

同步練習(xí)冊答案