2.已知全集U=R,集合A={x|${\frac{x-1}{x+3}$≤0},集合B={x|y=$\sqrt{3-{{(\frac{1}{3})}^x}}$,x∈R},則A∩(CUB)為( 。
A.{x|-3<x≤-1}B.{x|-3≤x<-1}C.{x|-3≤x≤-1}D.{x|-3<x<-1}

分析 求出集合的等價條件,根據(jù)集合的基本運算進行求解即可.

解答 解:A={x|${\frac{x-1}{x+3}$≤0}={x|-3<x≤1},
集合B={x|y=$\sqrt{3-{{(\frac{1}{3})}^x}}$,x∈R}={x|3-$(\frac{1}{3})^{x}$≥0}={x|x≥-1},
則CUB={x|x<-1},
則A∩(CUB)={x|-3<x<-1},
故選:D

點評 本題主要考查集合的基本運算,求出集合的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若數(shù)列{an}滿足:a1=1,an+1=an+n2,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.兩球O1和O2在棱長為1的正方體ABCD-A1B1C1D1的內(nèi)部,且互相外切,若球O1與過點A的正方體的三個面相切,球O2與過點C1的正方體的三個面相切,則球O1和O2的表面積之和的最小值為( 。
A.3(2-$\sqrt{3}$)πB.4(2-$\sqrt{3}$)πC.3(2+$\sqrt{3}$)πD.4(2+$\sqrt{3}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xoy中,動點A的坐標(biāo)為(2-3sinα,3cosα-2),其中α∈R.以原點O為極點,以x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的方程為ρcos(θ-$\frac{π}{4}$)=a.
(Ⅰ)判斷動點A的軌跡表示什么曲線;
(Ⅱ)若直線l與動點A的軌跡有且僅有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算的結(jié)果,認(rèn)為H0成立的可能性不足1%,那么K2的一個可能取值為( 。﹨⒖紨(shù)據(jù)
P(K2≥k0)     0.05 0.025 0.010 0.005 0.001
 k0 3.841 5.024 6.635 7.879 10.83
A.6.635B.7.897C.5.024D.3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在矩形ABCD中,AB=2,AD=1,O為AB中點,拋物線的一部分在矩形內(nèi),點O為拋物線頂點,點C,D在拋物線上,在矩形內(nèi)隨機地投放一點,則此點落在陰影部分的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)全集U=R,集合M={x|0<x≤1},N={x|x≤0},則M∩(∁UN)=(  )
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|0≤x≤1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+2(a-2)x-4alnx(a<0),其中e為自然數(shù)的底數(shù).
(Ⅰ)討論函數(shù)y=f(x)的單調(diào)性并求極值;
(Ⅱ)若對任意的x1、x2∈(0,+∞),且x1<x2,都有f(x2)-f(x1)>2a(x2-x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,⊙O的直徑AB=2,AB上的點C平分該弧.
(1)證明:平面POD⊥平面PAC;
(2)求二面角B-PA-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案