11.已知集合$M=\left\{{x|\frac{3}{x^2}<1}\right\},N=\left\{{n|1≤{2^n}≤13且n∈Z}\right\}$,則N∩M=( 。
A.{2,3}B.{3}C.$[{0,\sqrt{3}})$D.[2,+∞)

分析 求出M中不等式的解集確定出M,找出N中滿足不等式的整數(shù)n的值確定出N,找出M與N的交集即可.

解答 解:由M中不等式變形得:x2>3,
解得:x<-3或x>3,即M=(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞),
由N中1≤2n≤13,得到n=1,2,3,即N={1,2,3},
則M∩N={2,3},
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-6x+5=0,點(diǎn)A,B在圓上,且AB=2$\sqrt{3}$則|$\overrightarrow{OA}+\overrightarrow{OB}$|的取值范圍是[4,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.△ABC的三內(nèi)角A,B,C所對(duì)邊長分別是a,b,c,設(shè)向量$\overrightarrow n=(\sqrt{3}a+c,sinB-sinA)$,$\overrightarrow m=(a+b,sinC)$,若$\overrightarrow m∥\overrightarrow n$,則角B的大小為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)$\overrightarrow{a_k}=({cos\frac{kπ}{6},sin\frac{kπ}{6}+cos\frac{kπ}{6}}),k∈Z,則\overrightarrow{{a_{2015}}}•\overrightarrow{{a_{2016}}}$=(  )
A.$\sqrt{3}$B.$\sqrt{3}-\frac{1}{2}$C.$2\sqrt{3}-1$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知冪函數(shù)f(x)=xα的圖象過點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),則α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知α是第二象限的角,tanα=-$\frac{1}{2}$,則cosα=-$\frac{2\sqrt{5}}{5}$,tan2α=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:方程$\frac{{x}^{2}}{t+2}$+$\frac{{y}^{2}}{t-10}$=1表示雙曲線,命題q:1-m<t<1+m(m>0). 若q是p的充分非必要條件,
試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)在[0,+∞)上遞增,$f(\frac{1}{3})=0$,已知g(x)=-f(|x|),滿足$g({log_{\frac{1}{8}}}x)>0$的x的取值范圍是( 。
A.(0,+∞)B.$(0,\frac{1}{2})∪(2,+∞)$C.$(0,\frac{1}{8})∪(\frac{1}{2},2)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.直角坐標(biāo)系的原點(diǎn)是極點(diǎn),x軸正半軸為極軸,自極點(diǎn)O作直線與曲線pcosθ=4相交于點(diǎn)Q,在OQ上有一動(dòng)點(diǎn)P滿足|OP|•|OQ|=12,若點(diǎn)P的軌跡為曲線C2,方程$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{2}t}\end{array}\right.$(t為參數(shù))表示的曲線為C1,
(1)求C1的極坐標(biāo)方程;
(2)若曲線C1與C2交于點(diǎn)A、B,求A、B兩點(diǎn)的距離|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案