5.函數(shù)y=sinx-cosx-sinxcosx的最大值為$\frac{1}{2}$+$\sqrt{2}$.

分析 令sinx-cosx=t∈[-$\sqrt{2}$,$\sqrt{2}$],可得y=$\frac{1}{2}$(t+1)2-1,再利用二次函數(shù)的性質(zhì)求得它的最大值.

解答 解:令sinx-cosx=t∈[-$\sqrt{2}$,$\sqrt{2}$],則t2=1-2sinxcosx,
函數(shù)y=sinx-cosx-sinxcosx=t-$\frac{1{-t}^{2}}{2}$=$\frac{1}{2}$t2+t-$\frac{1}{2}$=$\frac{1}{2}$(t+1)2-1,
故當(dāng)t=$\sqrt{2}$時(shí),函數(shù)y取得最大值為 t=$\frac{1}{2}$+$\sqrt{2}$,
故答案為:$\frac{1}{2}$+$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足對(duì)?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18.若函數(shù)y=f(x)-loga(|x|+1)在R上至少有四個(gè)零點(diǎn),則a的取值范圍是0<a≤$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一個(gè)扇形的圓心角是2弧度,弧長(zhǎng)為4cm,則扇形的面積是4cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若關(guān)于x的方程x3-3x+a=0有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍(  )
A.-2<a≤0B.0≤a<2C.-2<a<2D.-2≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)y=f(1-x2)的定義域[-2,3],則函數(shù)g(x)=$\frac{f(2x+1)}{x+2}$的定義域是(  )
A.(-∞,-2)∪(-2,3]B.[-8,-2)∪(-2,1]C.[-$\frac{9}{2}$,-2)∪(-2,0]D.[-$\frac{9}{2}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=lg(5-x),若f(2k-1)<f(k+1),則實(shí)數(shù)k的取值范圍是2<k<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若實(shí)數(shù)a,b滿(mǎn)足$\frac{4}{a}+\frac{1}=\sqrt{ab}$,則當(dāng)ab取得最小值時(shí)b的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求滿(mǎn)足下列函數(shù)的解析式.
(1)f(1+x)=4x+2;
(2)$f(\frac{1}{2}x)=2{x^2}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且a2+c2=b2+ac.
(1)若b=$\sqrt{3}$,sinC=2sinA,求c的值;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案