A. | 正三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
分析 在△ABC中,利用二倍角的余弦與正弦定理可將已知cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,轉(zhuǎn)化為cosA=$\frac{sinB}{sinC}$,整理即可判斷△ABC的形狀.
解答 解:在△ABC中,∵cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,
∴$\frac{1+cosA}{2}$=$\frac{sinB+sinC}{2sinC}$=$\frac{1}{2}$$•\frac{sinB}{sinC}$+$\frac{1}{2}$
∴1+cosA=$\frac{sinB}{sinC}$+1,即cosA=$\frac{sinB}{sinC}$,
∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC=0,sinA≠0,
∴cosC=0,
∴C為直角.
故選:B.
點(diǎn)評(píng) 本題考查三角形的形狀判斷,著重考查二倍角的余弦與正弦定理,誘導(dǎo)公式的綜合運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(-2,3] | B. | [-8,-2)∪(-2,1] | C. | [-$\frac{9}{2}$,-2)∪(-2,0] | D. | [-$\frac{9}{2}$,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$>$\frac{1}$ | B. | $\frac{a-b}{a}$>0 | C. | a2<b2 | D. | a3<b3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com