10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,則△ABC的形狀一定是( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

分析 在△ABC中,利用二倍角的余弦與正弦定理可將已知cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,轉(zhuǎn)化為cosA=$\frac{sinB}{sinC}$,整理即可判斷△ABC的形狀.

解答 解:在△ABC中,∵cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,
∴$\frac{1+cosA}{2}$=$\frac{sinB+sinC}{2sinC}$=$\frac{1}{2}$$•\frac{sinB}{sinC}$+$\frac{1}{2}$
∴1+cosA=$\frac{sinB}{sinC}$+1,即cosA=$\frac{sinB}{sinC}$,
∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC=0,sinA≠0,
∴cosC=0,
∴C為直角.
故選:B.

點(diǎn)評(píng) 本題考查三角形的形狀判斷,著重考查二倍角的余弦與正弦定理,誘導(dǎo)公式的綜合運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(1-x2)的定義域[-2,3],則函數(shù)g(x)=$\frac{f(2x+1)}{x+2}$的定義域是( 。
A.(-∞,-2)∪(-2,3]B.[-8,-2)∪(-2,1]C.[-$\frac{9}{2}$,-2)∪(-2,0]D.[-$\frac{9}{2}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓x2+y2=4上存在兩點(diǎn)到點(diǎn)(m,m)(m>0)的距離為1,則實(shí)數(shù)m的取值范圍為$\frac{\sqrt{2}}{2}$<a<$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=$\frac{mx-2}{x-2}$在區(qū)間(2,+∞)上是增函數(shù),則實(shí)數(shù)m的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若a<b<0,則下列結(jié)論不正確的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{a-b}{a}$>0C.a2<b2D.a3<b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且a2+c2=b2+ac.
(1)若b=$\sqrt{3}$,sinC=2sinA,求c的值;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)滿足$f(x)+2f(\frac{1}{x})={log_2}x$,則f(2)的值(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解答下列問題
(1)計(jì)算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=${log_{0.5}}(4-3x-{x^2})$的遞增區(qū)間是$(-\frac{3}{2},1)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案