17.一個小組的3個學(xué)生在分發(fā)數(shù)學(xué)作業(yè)時,從他們3人的作業(yè)中各隨機地取出2份作業(yè),則每個學(xué)生拿的都不是自己作業(yè)的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

分析 設(shè)三個人的作業(yè)a,b,c,利用列舉法列舉出所有的基本事件,再找到滿足條件的基本事件,根據(jù)概率公式計算即可.

解答 解:設(shè)三個人的作業(yè)a,b,c,則總得事件為abc,acb,bac,bca,cab,cba,共6個
則都不是自己的作業(yè)的為bca,cab,
根據(jù)概率公式得每個學(xué)生拿的都不是自己作業(yè)的概率是$\frac{2}{6}$=$\frac{1}{3}$,
故選:B

點評 本題考查了古典概率問題,關(guān)鍵是不重不漏的列舉所有的基本事件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知下列四個命題:
①若a>0,b>0,則alnb=blna;
②若x∈R,則cos(sinx)=sin(cosx);
③不存在一個多項式函數(shù)P(x),使得對任意的實數(shù)x都有|P(x)-cosx|≤10-3;
④若x>0,則x4+3+x-4≥5.
其中正確的命題的個數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把一枚硬幣任意拋擲三次,事件A=“至少一次出現(xiàn)正面”,事件B“恰有一次出現(xiàn)正面”,則P(B|A)=( 。
A.$\frac{3}{7}$B.$\frac{3}{8}$C.$\frac{7}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=2cos(ωx+φ)(ω≠0),對任意x都有f($\frac{π}{4}$+x)=f($\frac{π}{4}$-x),則f($\frac{π}{4}$)等于( 。
A.2或0B.-2或2C.0D.-2或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是圓O的直徑.過點C作圓O的切線交BA的延長線于點F.
(Ⅰ)求證:AC•BC=AD•AE;
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列結(jié)論:
①若命題P:?x∈R,tanx<x,命題q:?x∈R,lg2x+lgx+1>0,則命題“p且¬q”是真命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
③若隨機變量ξ~B(n,p),Eξ=6,Dξ=3,則$P(ξ=1)=\frac{3}{4}$,
④全市某次數(shù)學(xué)考試成績ξ~N(95,σ2),P(ξ>120)=a,P(70<ξ<95)=b,
則直線$ax+by+\frac{1}{2}=0$與圓x2+y2=2相切或相交..
其中正確結(jié)論的序號是①④(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.以直角坐標系的原點O為極點,x軸的正半軸建立坐標系,且兩個坐標系取相等的單位長度.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=1+t\end{array}\right.$,(t是參數(shù)),圓C的極坐標方程為ρ=2.
(1)寫出直線l及圓C的普通方程;
(2)設(shè)P(1,1),直線l與圓C相交于A,B,求||PA|-|PB||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)二次函數(shù)y=f(x)=ax2+bx+c(a>b>c),f(1)=0,且存在實數(shù)m使得f(m)=-a.
(Ⅰ)求證:(i)b≥0;(ii)f(m+3)>0;
(Ⅱ)函數(shù)y=g(x)=f(x)+bx的圖象與x軸的兩個交點間的距離記為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.($\frac{3}{2}$)${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+8${\;}^{\frac{1}{4}}$×$\root{4}{2}$-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$=2.

查看答案和解析>>

同步練習(xí)冊答案