9.已知變量x、y滿足約束條件$\left\{{\begin{array}{l}x+y≤1\\ x-y≤1\\ x+1≥0\end{array}}\right.$,則z=x-2y的最大值為( 。
A.3B.1C.-5D.-6

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{{\begin{array}{l}x+y≤1\\ x-y≤1\\ x+1≥0\end{array}}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x-y=1}\end{array}\right.$,解得A(-1,-2),
化目標(biāo)函數(shù)z=x-2y為y=$\frac{x}{2}-\frac{z}{2}$,
由圖可知,當(dāng)直線y=$\frac{x}{2}-\frac{z}{2}$過(guò)A時(shí),直線在y軸上的截距最小,z有最大值為3.
故選:A.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=x2+ax+blnx+c有三個(gè)不同的零點(diǎn)x1,x2,x3且x1<x2<x3的若x=m是f(x)的極大值點(diǎn),且f(m)=x3,則關(guān)于x的方程f[f(x)]=0的不同零點(diǎn)的個(gè)數(shù)是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列命題錯(cuò)誤的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0,則x2+y2≠0”
B.若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則¬p:?x∈R,x2-x+1>0
C.若向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a•\overrightarrow b<0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角
D.△ABC中,sinA>sinB是A>B的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.對(duì)于一組向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{{a}_{P}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{P}}$|,那么稱$\overrightarrow{a_p}$是該向量組的“h向量”;
(1)設(shè)$\overrightarrow{{a}_{n}}$=(n,n+x)(n∈N*),若$\overrightarrow{a_3}$是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,求x的范圍;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*)是否存在“h向量”?
給出你的結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若2x比1接近3,求x的取值范圍;
(2)已知函數(shù)f(x)定義域D=(-∞,0)∪(0,1)∪(1,3)∪(3,+∞),對(duì)于任意的x∈D,f(x)等于x2-2x與x中接近0的那個(gè)值,寫出函數(shù)f(x)的解析式,若關(guān)于x的方程f(x)-a=0有兩個(gè)不同的實(shí)數(shù)根,求出a的取值范圍;
(3)已知a,b∈R,m>0且a≠b,求證:$\frac{a+mb}{m+1}$比$\sqrt{\frac{{{a^2}+m{b^2}}}{m+1}}$接近0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在等比數(shù)列,${S_n}={3^n}-1$,則a1等于( 。
A.2B.3C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知1+4+7+…+x=145,則x的值為28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在下列命題中,真命題的個(gè)數(shù)是( 。
①若K2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺;
②由樣本數(shù)據(jù)得到的回歸直線$\widehat{y}$=$\widehat$x+$\widehat{a}$必過(guò)樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$);
③殘差平方和越小的模型,擬合的效果越好;
④若復(fù)數(shù)z=m2-1+(m+1)i為純虛數(shù),則實(shí)數(shù)m=±1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算:
①$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{(π+e)^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$
②$2lg5+lg4+ln\sqrt{e}+{log_{25}}5$.

查看答案和解析>>

同步練習(xí)冊(cè)答案