10.已知函數(shù)f(x)=$\frac{1-mx}{1+x}$.
(1)當(dāng)m=2時(shí),用定義證明:f(x)在x∈(0,+∞)上的單調(diào)遞減;
(2)若不恒為0的函數(shù)g(x)=1gf(x)是奇函數(shù),求實(shí)數(shù)m的值.

分析 (2)根據(jù)函數(shù)單調(diào)性的定義證明步驟即可.
(2)由不恒為0的函數(shù)g(x)=1gf(x)是奇函數(shù),可得g(-x)+g(x)=0,即可求實(shí)數(shù)m的值.

解答 (1)證明:當(dāng)m=2時(shí),f(x)=$\frac{1-2x}{1+x}$=-2+$\frac{1}{1+x}$,
任意的x1,x2∈(0,+∞),且x1<x2,
所以有f(x1)-f(x2)=$\frac{{x}_{2}-{x}_{1}}{(1+{x}_{1})(1+{x}_{2})}$
因?yàn)?<x1<x2
所以x2-x1>0,
所以f(x1)-f(x2)>0,即f(x1)>f(x2),
故函數(shù)f(x)在x∈(0,+∞)上的單調(diào)遞減;
(2)解:∵不恒為0的函數(shù)g(x)=1gf(x)是奇函數(shù),
∴g(-x)+g(x)=0,f(x)≠1
∴1gf(-x)+1gf(x)=0,
∴1g[f(-x)f(x)]=0,
∴f(-x)f(x)=1,
∴$\frac{1+mx}{1-x}$•$\frac{1-mx}{1+x}$=1,
∴m=±1.
∵f(x)≠1
∴m=1.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,函數(shù)單調(diào)性的判斷與證明,考查學(xué)生分析解決問題的能力,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算:$\root{3}{(\sqrt{\frac{1}{9}}-\sqrt{\frac{2}{9}})^{3}}$•(3$\sqrt{2}$+3)+$\frac{(\sqrt{3})^{4}-(\sqrt{2})^{4}}{(\sqrt{3}-\sqrt{2})^{0}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a-1-a=1,求$\frac{{a}^{2}+{a}^{-2}-2}{{a}^{4}-{a}^{-4}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,C=2A,且a,b,c成公差為1的等差數(shù)列,
(1)求a的值;
(2)求sin(2A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.比較0.43,30.4,log0.34的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f($\frac{2}{x}$+1)=lgx,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于函數(shù)的性質(zhì),有如下命題:
①若函數(shù)f(x)的定義域?yàn)镽,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②已知f(x)是定義域內(nèi)的增函數(shù),且f(x)≠0,則$\frac{1}{f(x)}$是減函數(shù);
③若f(x)是定義域?yàn)镽的奇函數(shù),則函數(shù)f(x-2)的圖象關(guān)于點(diǎn)(2,0)對(duì)稱;
④已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足$f(2x-1)<f(\frac{1}{3})$的x的取值范圍是$(\frac{1}{3},\frac{2}{3})$.
其中正確的命題序號(hào)有①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an},a1=$\frac{{a}_{2}}{2}$=1且an+an+1=an+2(?n∈N*),Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.求證:存在正整數(shù)M,使得對(duì)任意的n>M都有2<Sn<3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)證明f(x)在區(qū)間[2,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案