3.已知f($\frac{2}{x}$+1)=lgx,求f(x).

分析 利用換元法求解函數(shù)的解析式即可.

解答 解:令$\frac{2}{x}$+1=t,t>1,則x=$\frac{2}{t-1}$,
f($\frac{2}{x}$+1)=lgx,
可得f(t)=lg$\frac{2}{t-1}$.
∴f(x)=lg$\frac{2}{x-1}$,x>1.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,注意函數(shù)的定義域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求值:$\frac{\sqrt{1-2sin160°cos340°}}{cos200°+\sqrt{1-co{s}^{2}20°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知U=R,集合A={x|0<x<4},B={x|1<x<7},求A∩B,A∪B,∁UA,∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+(2m-1)$\overrightarrow{{e}_{2}}$+(4-n)$\overrightarrow{{e}_{3}}$,$\overrightarrow$=-2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$+($\frac{1}{2}$n+2)$\overrightarrow{{e}_{3}}$,($\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$為單位正交基底),且$\overrightarrow{a}$∥$\overrightarrow$,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1-mx}{1+x}$.
(1)當(dāng)m=2時(shí),用定義證明:f(x)在x∈(0,+∞)上的單調(diào)遞減;
(2)若不恒為0的函數(shù)g(x)=1gf(x)是奇函數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列結(jié)論正確的是( 。
A.若A=R,B=(0,+∞),則f:x→|x|是集合A到集合B的函數(shù)
B.若A={x|0≤x≤4},B={y|0≤y≤3},則f:y=$\frac{2}{3}$x是集合A到集合B的映射
C.函數(shù)的圖象與y軸至少有1個(gè)交點(diǎn)
D.若y=f(x)是奇函數(shù),則其圖象一定經(jīng)過原點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1-lo{g}_{2}(2-x)(x<2)}\\{{2}^{1-x}+\frac{3}{2}(x≥2)}\end{array}\right.$,則f(f(3))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在同一平面直角坐標(biāo)系中,曲線C:x2+y2=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后,變?yōu)榍C′.
(1)求曲線C′的方程;
(2)在曲線C′上求一點(diǎn)P,使點(diǎn)P到直線x+2y-8=0的距離最小,求出最小值并寫出此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.f(x)是定義在(-3,3)上的奇函數(shù),且單調(diào)遞減,若f(2-a)+f(4-3a)<0,則a的取值范圍為$({\frac{1}{3},\frac{3}{2}})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案