分析 (1)先求f(x)定義域為{x|x≠0},容易得到f(-x)=-f(x),從而f(x)為奇函數(shù);
(2)根據(jù)增函數(shù)的定義,設(shè)任意的x1>x2≥2,然后作差,通分,提取公因式x1-x2,從而證明f(x1)>f(x2),這便可得出f(x)在[2,+∞)上是增函數(shù).
解答 解:(1)f(x)的定義域為{x|x≠0};
f(-x)=-x-$\frac{4}{x}$=-f(x);
∴f(x)為奇函數(shù);
(2)證明:設(shè)x1>x2≥2,則:
$f({x}_{1})-f({x}_{2})={x}_{1}+\frac{4}{{x}_{1}}-{x}_{2}-\frac{4}{{x}_{2}}$=$({x}_{1}-{x}_{2})(1-\frac{4}{{x}_{1}{x}_{2}})$;
∵x1>x2≥2;
∴x1-x2>0,x1x2>4,$1-\frac{4}{{x}_{1}{x}_{2}}>0$;
∴$({x}_{1}-{x}_{2})(1-\frac{4}{{x}_{1}{x}_{2}})>0$;
∴f(x1)>f(x2);
∴f(x)在[2,+∞)上是增函數(shù).
點評 考查函數(shù)奇偶性的定義,以及判斷函數(shù)奇偶性的方法和過程,增函數(shù)的定義,及根據(jù)增函數(shù)的定義證明一個函數(shù)為增函數(shù)的方法和過程,作差的方法比較f(x1),f(x2),作差后是分式的一般要通分,一般要提取公因式x1-x2.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1x2<0 | B. | 0<x1x2<1 | C. | x1x2=1 | D. | x1x2>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 方程x2-2x+1=0的根構(gòu)成的集合為{1,1} | |
B. | {x∈R|x2+1=0}={x∈R|$\left\{\begin{array}{l}{2x+4>0}\\{x+3<0}\end{array}\right.$} | |
C. | 集合M={(x,y)|x+y=5且2x-y=0}表示的集合是{2,3} | |
D. | 集合{1,2,3}與集合{3,2,1}是不同的集合 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com