分析 由圓的方程找出圓心坐標(biāo)和半徑r,當(dāng)切線方程的斜率不存在時(shí),顯然x=2滿足題意;當(dāng)切線方程的斜率存在時(shí),設(shè)斜率為k,由P的坐標(biāo)和k表示出切線方程,利用點(diǎn)到直線的距離公式表示出圓心到切線的距離d,根據(jù)d=r列出關(guān)于k的方程,求出方程的解,得到k的值,確定出此時(shí)切線的方程,綜上,得到所有滿足題意的切線方程.
解答 解:由圓(x-1)2+(y-1)2=1,得到圓心坐標(biāo)為(1,1),半徑r=1,
當(dāng)過P的切線方程斜率不存在時(shí),顯然x=2為圓的切線;
當(dāng)過P的切線方程斜率存在時(shí),設(shè)斜率為k,切線方程為y-3=k(x-2),即kx-y-2k+3=0,
∴圓心到切線的距離d=$\frac{|-k+2|}{\sqrt{{k}^{2}+1}}$=r=1,
解得:k=$\frac{3}{4}$,
此時(shí)切線方程為3x-4y+6=0,
綜上,切線方程為x=2或3x-4y+6=0.
點(diǎn)評(píng) 此題考查了圓的切線方程,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,直線的點(diǎn)斜式方程,利用了分類討論的思想,是高考中?嫉念}型.本題易漏掉特殊情況導(dǎo)致錯(cuò)誤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>-1} | B. | {x|-1<x<5} | C. | {x|0<x<5} | D. | {x|x<5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 49 | B. | 49.5 | C. | 50 | D. | 50.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有完全平方數(shù) | B. | 沒有完全平方數(shù) | C. | 沒有偶數(shù) | D. | 沒有3的倍數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,$\sqrt{3}$) | B. | ($\sqrt{3}$,3) | C. | (3,-$\sqrt{3}$) | D. | (-$\sqrt{3}$,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com