20.$\root{4}{{{{(-2)}^4}}}$的運算結(jié)果是( 。
A.2B.-2C.±2D.不確定

分析 直接利用有理指數(shù)冪的運算法則求解即可.

解答 解:$\root{4}{{(-2)}^{4}}$=$\root{4}{{2}^{4}}$=2.
故選:A.

點評 本題考查有理指數(shù)冪的運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C:x2+y2-4x-14y+45=0及點Q(-2,3),
(Ⅰ)若點P(m,m+1)在圓C上,求PQ的斜率;
(Ⅱ)若點M是圓C上任意一點,求|MQ|的最大值、最小值;
(Ⅲ)若N(a,b)滿足關(guān)系:a2+b2-4a-14b+45=0,求出t=$\frac{b-3}{a+2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正方體ABCD-A1B1C1D1,P是AD1中點,Q是BD中點,E是DD1中點.(1)求證:PQ∥平面D1DCC1;
(2)求異面直線CE和DP所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.從某大學(xué)隨機選取8名女大學(xué)生,其身高x(cm)和體重y(kg)的回歸方程為 $\hat y=0.849x-85.712$,則身高172cm的女大學(xué)生,由回歸方程可以預(yù)報其體重(  )
A.為60.316kgB.約為60.316kgC.大于60.316kgD.小于60.316kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知方程$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}$=1和$\frac{x}{a}$+$\frac{y}$=1(其中ab≠0且a≠b),則它們所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax,g(x)=a-2x+1,其中a>0,且a≠1.
(1)若函數(shù)f(x)的圖象經(jīng)過點(2,4),求f(-1)的值;
(2)解不等式:f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.執(zhí)行如圖所示的流程圖,則輸出的S的值為$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的前n項和為Sn,已知公差d<0,S3=12,且2a1,a2,a3+1成等比數(shù)列;
(1)當(dāng)n取何值時,Sn有最大值,最大值是多少?
(2)設(shè)Tn=|a1|+|a2|+…+|an|,求T10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)拋物線y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點為F2;以F1、F2為焦點,離心率e=$\frac{1}{2}$的橢圓與拋物線的一個交點為$E(\frac{2}{3},\frac{{2\sqrt{6}}}{3})$;自F1引直線交拋物線于P、Q兩個不同的點,點P關(guān)于x軸的對稱點記為M,設(shè)$\overrightarrow{{F_1}P}=λ\overrightarrow{{F_1}Q}$.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若$λ∈[\frac{1}{2},1)$,求|PQ|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案