4.$sin\frac{2015π}{3}$=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 原式中的角度變形后,利用誘導公式及特殊角的三角函數(shù)值計算即可得到結果.

解答 解:sin$\frac{2015π}{3}$=sin(670π+π+$\frac{2π}{3}$)=sin(π+$\frac{2π}{3}$)=-sin$\frac{2π}{3}$=-sin(π-$\frac{π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$,
故選:D.

點評 此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若α,β為不重合的兩個平面,m,n為不重合的兩條直線,則下列命題中正確的是( 。
A.苦m∥n,n?α,則m∥αB.若m∥n,m?α,n⊥β,則α⊥β
C.若α∥β,m?α,n?β,則m∥nD.若α⊥β,m?α,則m⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.對于函數(shù)y=f(x),若x0滿足f(x0)=x0,則稱x0位函數(shù)f(x)的一階不動點,若x0滿足f(f(x0))=x0,則稱x0位函數(shù)f(x)的二階不動點,若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為函數(shù)f(x)的二階周期點.
(1)設f(x)=kx+1.
①當k=2時,求函數(shù)f(x)的二階不動點,并判斷它是否是函數(shù)f(x)的二階周期點;
②已知函數(shù)f(x)存在二階周期點,求k的值;
(2)若對任意實數(shù)b,函數(shù)g(x)=x2+bx+c都存在二階周期點,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|x|+$\frac{m}{x}$-1(x≠0)
(1)若對任意的x∈R+,不等式f(x)>0恒成立,求m的取值范圍;
(2)試討論函數(shù)f(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)$f(x)={log_2}x-(\frac{1}{2}{)^x}$的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=loga(x-1)+4(a>0且a≠1)恒過定點P,若點P也在冪函數(shù)g(x)的圖象上,則g(4)=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設a=0.5${\;}^{\frac{1}{2}}}$,b=0.9${\;}^{\frac{1}{4}}}$,c=log50.3,則a,b,c的大小關系是( 。
A.a>c>bB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在三棱錐A-BCD中,AB⊥平面BCD,DB=DC=4,∠BDC=90°,P在線段BC上,CP=3PB,M,N分別為AD,BD的中點.
(Ⅰ)求證:BC⊥平面MNP;
(Ⅱ)若AB=4,求直線MC與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象向右平移2個單位后得到的函數(shù)圖象關于原點對稱,則實數(shù)φ的值為4-π.

查看答案和解析>>

同步練習冊答案