12.若α,β為不重合的兩個(gè)平面,m,n為不重合的兩條直線,則下列命題中正確的是( 。
A.苦m∥n,n?α,則m∥αB.若m∥n,m?α,n⊥β,則α⊥β
C.若α∥β,m?α,n?β,則m∥nD.若α⊥β,m?α,則m⊥β

分析 利用空間中線線、線面、面面間的位置關(guān)系判斷.

解答 解:根據(jù)直線和平面平行的判定定理:如果平面一條直線與平面內(nèi)一條直線平行,那么直線和平面就平行,可知A不正確;
m∥n,n⊥β,則m⊥β,由于m?α,則α⊥β,即B正確;
m,n共面時(shí),若α∥β,m?α,n?β,則m∥n,故C不正確;
α⊥β,m?α,根據(jù)平面與平面垂直的性質(zhì),可知m⊥β不正確.
故選:B.

點(diǎn)評(píng) 本題考查命題的真假判斷,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一個(gè)公司的一款新產(chǎn)品有若干銷售店,為了解該產(chǎn)品的廣告投入費(fèi)用與銷售額間的關(guān)系,該公司抽取了其中的五個(gè)銷售店作為樣本,統(tǒng)計(jì)出它們的廣告投入費(fèi)用x與銷售額y,如下表:
x(萬(wàn)元)24568
y(萬(wàn)元)3040605070
(1)求銷售額y對(duì)廣告費(fèi)用x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)設(shè)k=$\frac{銷售額}{廣告費(fèi)}$,若k≥10,則稱該店為“盈利店”,把上述樣品中“盈利店”的頻率視作一個(gè)店是“盈利店”的概率,現(xiàn)另外再調(diào)查3個(gè)銷售店,記這三個(gè)店中“盈利店”的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.己知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,若目標(biāo)函數(shù)z=3x+ay在點(diǎn)A($\frac{3}{2}$,$\frac{5}{2}$)取得最大值,則a的取值范圍是($\frac{9}{5},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z1=3+2i,z2=1-i,則|z1+$\frac{2}{{z}_{2}}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡(jiǎn):
(1)(sinα+cosα)2+(sinα-cosα)2;
(2)sin2α(1+$\frac{1}{tan^2α}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=2ax2-x3(a>1)在區(qū)間(0,1]上是增函數(shù),則實(shí)數(shù)a的取值范圍是[$\frac{3}{4},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知方程y=kx+13和x2+y2=144,當(dāng)k為何值時(shí),它們的曲線只有一個(gè)交點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,對(duì)于⊙O:x2+y2=1來說,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若P與O重合,SP=r;若P不與O重合,射線OP與⊙O的交點(diǎn)為A,SP=AP的長(zhǎng)度(如圖).
(1)直線2x+2y+1=0在圓內(nèi)部分的點(diǎn)到⊙O的最長(zhǎng)距離為1-$\frac{\sqrt{2}}{4}$;
(2)若線段MN上存在點(diǎn)T,使得:
①點(diǎn)T在⊙O內(nèi);
②?點(diǎn)P∈線段MN,都有ST≥SP成立.則線段MN的最大長(zhǎng)度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.$sin\frac{2015π}{3}$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案